
Netcool/Impact
Version 6.1.0.2

Policy Reference Guide

SC14-7553-00

���

Netcool/Impact
Version 6.1.0.2

Policy Reference Guide

SC14-7553-00

���

Note
Before using this information and the product it supports, read the information in “Notices”.

Edition notice

This edition applies to version 6.1.0.2 of IBM Tivoli Netcool/Impact and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Policy Reference Guide vii
Intended audience vii
Publications vii

Netcool/Impact library vii
Accessing terminology online vii
Accessing publications online viii
Ordering publications viii

Accessibility viii
Tivoli technical training viii
Support for problem solving ix

Obtaining fixes ix
Receiving weekly support updates ix
Contacting IBM Software Support x

Conventions used in this publication xii
Typeface conventions xii
Operating system-dependent variables and paths xii

Chapter 1. Getting started 1
Policies overview 1

Using policies 1
Creating policies 1
Running policies 1

Policy capabilities. 2
Event handling 2
Data handling 2
E-mail 2
Instant messages 2
Integration with external systems, applications,
and devices. 3
Accessing Service-related information from a
policy. 3

Policy language 3
Data types 3
Variables. 4
Operators 4
Control structures 4
Functions 4
External function libraries 4
Exception handling 4
Clear cache syntax 4
Date/Time patterns 5
Policy example 6

Policy triggers 7
Event readers as policy triggers 7
Database listeners as policy triggers 7
E-Mail readers as policy triggers 7
Jabber readers as policy triggers 7
Web services listeners as policy triggers 7
JMS listeners as policy triggers 8
nci_trigger 8
Running policies in the graphical user interface. . 8

Policy editor 8

Chapter 2. Policy fundamentals 9
Differences between IPL and JavaScript 9

Customize data output to follow the JavaScript
standard 10
Policy-level data types 11

Simple data types 11
Complex data types 12

Variables 15
Built-in variables 16
User-defined variables 18

Operators 19
Assignment operator 20
Bitwise operators 20
Boolean operators 20
Comparison operators 21
Mathematic operators 21
String operators 21

Control structures 22
If statements 22
While statements 23

Functions 25
Web services functions. 26
SNMP functions 26
Java Policy functions 26
User-defined functions. 27
Local transactions 29

Function libraries 30
Creating function libraries 30
Calling functions in a library 30

Synchronized statement blocks 31
Exceptions. 32

Raising exceptions 32
Handling exceptions 32

Runtime parameters 34
Setting policy runtime parameters in the editor 34
Running policies with parameters in the editor 34
Running a policy using the nci_trigger script . . 35

Chained policies 35
Chaining policies 35

Encrypted policies 36
Line continuation character 36
Code commenting 36

Chapter 3. Local transactions 39
Local transactions template 39
Local transactions best practices 41

Chapter 4. Stored procedures 43
Oracle stored procedures 43

Writing policies with automatic schema discovery 43
Writing policies without automatic schema
discovery 51

Sybase and Microsoft SQL Server stored procedures 58
Calling procedures that return a single value . . 58
Calling procedures that return database rows . . 60

DB2 SQL stored procedures 63
Calling procedures that return scalar values . . 63

© Copyright IBM Corp. 2006, 2014 iii

Chapter 5. Filters 69
SQL filters 69
LDAP filters 70
Mediator filters 72

Chapter 6. Functions. 73
Activate 73
ActivateHibernation 74
AddDataItem 75
BatchDelete 76
BatchUpdate 78
BeginTransaction 79
CallDBFunction 79
CallStoredProcedure 80
ClassOf 81
CommandResponse. 82
CommitTransaction 89
CurrentContext 90
Decrypt. 90
DeleteDataItem 91
Deploy 91
DirectSQL 93
Distinct 95
Encrypt. 96
Eval 97
EvalArray 97
Exit 98
Extract 100
Float 100
FormatDuration 101
GetByFilter 102
GetByKey 104
GetByLinks 105
GetByXPath 107
GetClusterName 111
GetDate 111
GetFieldValue 111
GetGlobalVar 112
GetHTTP 113
GetHibernatingPolicies 116
GetScheduleMember 117
GetServerName. 118
GetServerVar 118
Hibernate. 119
Int 119
JavaCall 120
JRExecAction 122
Keys 123
Length 124
Load 124
LocalTime 125
Log. 126
Merge 127
NewEvent 128
NewJavaObject 129
NewObject 130
ParseDate 131
Random 132
ReceiveJMSMessage 132
RemoveHibernation 133
Replace 133

ReturnEvent 134
RExtract 135
RExtractAll 136
RollbackTransaction 138
SendEmail 138
SendInstantMessage 140
SendJMSMessage 143
SetFieldValue 143
SetGlobalVar 144
SetServerVar. 145
SnmpGetAction 146
SnmpGetNextAction 149
SnmpSetAction 153
SnmpTrapAction 155
Split 157
String 158
Strip 159
Substring 160
Synchronized 160
ToLower 161
ToUpper 162
Trim 163
TBSM functions 163

PassToTBSM. 164
RemoteTBSMShell 165
TBSMShell 165

UpdateEventQueue 165
URLDecode 167
URLEncode 167
WSDMGetResourceProperty 168
WSDMInvoke 169
WSDMUpdateResourceProperty 171
WSInvokeDL 172
WSNewArray 174
WSNewEnum 175
WSNewObject 176
WSNewSubObject 177
WSSetDefaultPKGName 177

Appendix A. Accessibility 179

Appendix B. Notices 181
Trademarks 183

Glossary 185
A 185
B 185
C 185
D 185
E 186
F 187
G 187
H 187
I. 187
J. 188
K 188
L 188
M 189
N 189
O 189

iv Netcool/Impact: Policy Reference Guide

P 189
S 189
U 191
V 191
W 191

X 191

Index 193

Contents v

vi Netcool/Impact: Policy Reference Guide

Policy Reference Guide

The Netcool/Impact Policy Reference Guide contains descriptions and complete
syntax references for the Impact Policy Language (IPL) and JavaScript.

Intended audience
This publication is for users who are responsible for writing Netcool/Impact
policies.

Publications
This section lists publications in the Netcool/Impact library and related
documents. The section also describes how to access Tivoli® publications online
and how to order Tivoli publications.

Netcool/Impact library
v Quick Start Guide, CF39PML

Provides concise information about installing and running Netcool/Impact for
the first time.

v Administration Guide, SC14755100
Provides information about installing, running and monitoring the product.

v User Interface Guide, SC14755400
Provides instructions for using the Graphical User Interface (GUI).

v Policy Reference Guide, SC14755300
Contains complete description and reference information for the Impact Policy
Language (IPL).

v DSA Reference Guide, SC14755500
Provides information about data source adaptors (DSAs).

v Operator View Guide, SC14755600
Provides information about creating operator views.

v Solutions Guide, SC14755200
Provides end-to-end information about using features of Netcool/Impact.

v Integrations Guide, SC14755700
Contains instructions for integrating Netcool/Impact with other IBM® software
and other vendor software.

v Troubleshooting Guide, GC14755800
Provides information about troubleshooting the installation, customization,
starting, and maintaining Netcool/Impact.

Accessing terminology online
The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

© Copyright IBM Corp. 2006, 2014 vii

http://www.ibm.com/software/globalization/terminology

Accessing publications online
Publications are available from the following locations:
v The Quick Start DVD contains the publications that are in the product library.

The format of the publications is PDF, HTML, or both. Refer to the readme file
on the DVD for instructions on how to access the documentation.

v Tivoli Information Center web site at http://publib.boulder.ibm.com/infocenter/
tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1/welcome.html. IBM posts
publications for all Tivoli products, as they become available and whenever they
are updated to the Tivoli Information Center Web site.

Note: If you print PDF documents on paper other than letter-sized paper, set
the option in the File → Print window that allows Adobe Reader to print
letter-sized pages on your local paper.

v Tivoli Documentation Central at http://www.ibm.com/developerworks/wikis/
display/tivolidoccentral/Impact. You can also access publications of the
previous and current versions of Netcool/Impact from Tivoli Documentation
Central.

v The Netcool/Impact wiki contains additional short documents and additional
information and is available at https://www.ibm.com/developerworks/
mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact.

Ordering publications
You can order many Tivoli publications online at http://
www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.
2. Select your country from the list and click Go.
3. Click About this site in the main panel to see an information page that

includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For additional information, see Appendix A, “Accessibility,” on page 179.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at http://www.ibm.com/software/tivoli/education.

viii Netcool/Impact: Policy Reference Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1/welcome.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1/welcome.html
http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Impact
http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Impact
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.ibm.com/software/tivoli/education

Support for problem solving
If you have a problem with your IBM software, you want to resolve it quickly. This
section describes the following options for obtaining support for IBM software
products:
v “Obtaining fixes”
v “Receiving weekly support updates”
v “Contacting IBM Software Support” on page x

Obtaining fixes
A product fix might be available to resolve your problem. To determine which
fixes are available for your Tivoli software product, follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support.
2. Navigate to the Downloads page.
3. Follow the instructions to locate the fix you want to download.
4. If there is no Download heading for your product, supply a search term, error

code, or APAR number in the search field.

For more information about the types of fixes that are available, see the IBM
Software Support Handbook at http://www14.software.ibm.com/webapp/set2/sas/
f/handbook/home.html.

Receiving weekly support updates
To receive weekly e-mail notifications about fixes and other software support news,
follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support.
2. Click the My IBM in the toobar. Click My technical support.
3. If you have already registered for My technical support, sign in and skip to

the next step. If you have not registered, click register now. Complete the
registration form using your e-mail address as your IBM ID and click Submit.

4. The Edit profile tab is displayed.
5. In the first list under Products, select Software. In the second list, select a

product category (for example, Systems and Asset Management). In the third
list, select a product sub-category (for example, Application Performance &
Availability or Systems Performance). A list of applicable products is
displayed.

6. Select the products for which you want to receive updates.
7. Click Add products.
8. After selecting all products that are of interest to you, click Subscribe to email

on the Edit profile tab.
9. In the Documents list, select Software.

10. Select Please send these documents by weekly email.
11. Update your e-mail address as needed.
12. Select the types of documents you want to receive.
13. Click Update.

If you experience problems with the My technical support feature, you can obtain
help in one of the following ways:

Policy Reference Guide ix

http://www.ibm.com/software/support
http://www.ibm.com/software/support
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/support
http://www.ibm.com/software/support

Online
Send an e-mail message to erchelp@u.ibm.com, describing your problem.

By phone
Call 1-800-IBM-4You (1-800-426-4409).

World Wide Registration Help desk
For word wide support information check the details in the following link:
https://www.ibm.com/account/profile/us?page=reghelpdesk

Contacting IBM Software Support
Before contacting IBM Software Support, your company must have an active IBM
software maintenance contract, and you must be authorized to submit problems to
IBM. The type of software maintenance contract that you need depends on the
type of product you have:
v For IBM distributed software products (including, but not limited to, Tivoli,

Lotus®, and Rational® products, and DB2® and WebSphere® products that run on
Windows or UNIX operating systems), enroll in Passport Advantage® in one of
the following ways:

Online
Go to the Passport Advantage Web site at http://www-306.ibm.com/
software/howtobuy/passportadvantage/pao_customers.htm .

By phone
For the phone number to call in your country, go to the IBM Worldwide
IBM Registration Helpdesk Web site at https://www.ibm.com/account/
profile/us?page=reghelpdesk.

v For customers with Subscription and Support (S & S) contracts, go to the
Software Service Request Web site at https://techsupport.services.ibm.com/ssr/
login.

v For customers with IBMLink, CATIA, Linux, OS/390®, iSeries®, pSeries, zSeries,
and other support agreements, go to the IBM Support Line Web site at
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006.

v For IBM eServer™ software products (including, but not limited to, DB2 and
WebSphere products that run in zSeries, pSeries, and iSeries environments), you
can purchase a software maintenance agreement by working directly with an
IBM sales representative or an IBM Business Partner. For more information
about support for eServer software products, go to the IBM Technical Support
Advantage Web site at http://www.ibm.com/servers/eserver/techsupport.html.

If you are not sure what type of software maintenance contract you need, call
1-800-IBMSERV (1-800-426-7378) in the United States. From other countries, go to
the contacts page of the IBM Software Support Handbook on the Web at
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html and
click the name of your geographic region for phone numbers of people who
provide support for your location.

To contact IBM Software support, follow these steps:
1. “Determining the business impact” on page xi
2. “Describing problems and gathering information” on page xi
3. “Submitting problems” on page xi

x Netcool/Impact: Policy Reference Guide

https://www.ibm.com/account/profile/us?page=reghelpdesk
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
https://www.ibm.com/account/profile/us?page=reghelpdesk
https://www.ibm.com/account/profile/us?page=reghelpdesk
https://www-946.ibm.com/support/servicerequest/relationship/nomination.action
https://www-946.ibm.com/support/servicerequest/relationship/nomination.action
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006
http://www.ibm.com/servers/eserver/techsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Determining the business impact
When you report a problem to IBM, you are asked to supply a severity level. Use
the following criteria to understand and assess the business impact of the problem
that you are reporting:

Severity 1
The problem has a critical business impact. You are unable to use the
program, resulting in a critical impact on operations. This condition
requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but
it is severely limited.

Severity 3
The problem has some business impact. The program is usable, but less
significant features (not critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little impact
on operations, or a reasonable circumvention to the problem was
implemented.

Describing problems and gathering information
When describing a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Software Support specialists can help you
solve the problem efficiently. To save time, know the answers to these questions:
v Which software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can you re-create the problem? If so, what steps were performed to re-create the

problem?
v Did you make any changes to the system? For example, did you make changes

to the hardware, operating system, networking software, and so on.
v Are you currently using a workaround for the problem? If so, be prepared to

explain the workaround when you report the problem.

Submitting problems
You can submit your problem to IBM Software Support in one of two ways:

Online
Click Submit and track problems on the IBM Software Support site at
http://www.ibm.com/software/support/probsub.html. Type your
information into the appropriate problem submission form.

By phone
For the phone number to call in your country, go to the contacts page of
the IBM Software Support Handbook at http://www14.software.ibm.com/
webapp/set2/sas/f/handbook/home.html and click the name of your
geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support creates an Authorized Program Analysis
Report (APAR). The APAR describes the problem in detail. Whenever possible,
IBM Software Support provides a workaround that you can implement until the
APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the
Software Support Web site daily, so that other users who experience the same
problem can benefit from the same resolution.

Policy Reference Guide xi

http://www.ibm.com/software/support/probsub.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Conventions used in this publication
This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, and margin graphics.

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

xii Netcool/Impact: Policy Reference Guide

Chapter 1. Getting started

This chapter contains information you need to get started with Netcool/Impact
policies.

Policies overview
A policy contains a set of statements written in either the Impact Policy Language
(IPL) or JavaScript.

Each statement is an instruction that describes a task to perform when certain
events or status conditions occur in your environment. Instructions can be for
high-level or low-level tasks. A single implementation of Netcool/Impact can have
any number of associated policies.

An example of a high-level task is “Send an event to the Netcool/OMNIbus
ObjectServer.” An example of a low-level task is “Store a value in the internal
MyDate variable.”

For more information, see “Policy language” on page 3.

For an example of a policy, see “Policy example” on page 6.

Using policies
You use policies to instruct Netcool/Impact to perform a wide variety of actions.

Common actions include sending and retrieving Netcool/OMNIbus events, and
adding, modifying or deleting data stored in external data sources. In addition,
you can also use a policy to send and receive e-mail, to send and receive instant
messages, and to communicate with external systems, devices and applications. For
more information, see “Policy capabilities” on page 2.

Creating policies
You can create policies using the policy editor in the GUI.

You can also copy and paste policies from a web page or document file into a
plain text editor to remove the rich text format. Then paste the policy into the
policy editor. The policy editor tool provides a syntax checker, a policy tree view,
and other utilities that help you create and manage policies more easily. For more
information, see “Policy editor” on page 8.

Running policies
Policies are run by services that monitor the environment for events or changes in
status.

These include the event reader and event listener services. You can also run a
policy manually using the GUI or the nci_trigger command line utility. For more
information, see “Policy triggers” on page 7.

© Copyright IBM Corp. 2006, 2014 1

Policy capabilities
Impact policies can perform a wide variety of tasks related to event management.

Event handling
Most Netcool/Impact policies provide instructions for parsing incoming event
data.

Handling event data from event reader and event listener services is one of the
primary tasks that you perform using Netcool/Impact. Policies also often update
event data that is stored in the ObjectServer or another event source. This is
particularly the case for event enrichment policies, which correlate events with
information stored in other data sources and then update the events using that
information.

You can use a policy to perform event-related tasks.
v Parse event data that originates with the Netcool/OMNIbus ObjectServer or

another event source (for example, event data stored in an SQL database)
v Send new events to ObjectServer or another event source
v Update existing events in ObjectServer or other event sources
v Delete existing events in ObjectServer or other event sources

Data handling
You can use a policy to perform data-related tasks.
v Retrieve data from a data source (for example, the internal data repository, or an

SQL database)
v Add new data to a data source
v Update data stored in a data source
v Delete data stored in a data source

Retrieving data from external data sources is a very common policy task,
particularly for event enrichment policies, which operate as described in “Event
handling.”

E-mail
You can use a policy to perform e-mail-related tasks.
v Send new e-mail to an SMTP server using the e-mail sender service
v Parse e-mail retrieved from a IMAP or POP server using the e-mail reader

service

Instant messages
You can use a policy to perform instant message-related tasks.
v Send instant messages to users of Yahoo! Messenger, AOL Instant Messenger,

Microsoft Messenger, ICQ, and instant messaging clients that use a Jabber
messaging service

v Parse instant messages sent to Netcool/Impact through a Jabber messaging
service

2 Netcool/Impact: Policy Reference Guide

Integration with external systems, applications, and devices
You can use a policy to integrate with external systems, applications, and devices
that communicate.

Use the following methods:
v Web services API
v XML over HTTP
v JMS
v Custom socket protocols
v Proprietary third-party interfaces provided by data source adaptors (DSAs).

Exchanging data with using a Web services API, XML over HTTP, or JMS is a
common way for a policy to communicate with external systems, applications, and
devices. You can use these communication mechanisms to integrate
Netcool/Impact with a very large variety of vendor software components.

Accessing Service-related information from a policy
You can also create a policy to access information related to Netcool/Impact
services.

The following policy example can check if a service is running, and can start or
stop a service.
GetByFilter("Service", "Name = ’OMNIbusEventReader’", false);
Reader = OrgNode;
log("Is Reader Running " + Reader.Running);

// Starting the Reader
Reader.Running = true;

// Stop the Reader
Reader.Running = false;

Policy language
You use the Impact Policy Language (IPL), or JavaScript to write the policies that
you want Netcool/Impact to run.

The IPL is a scripting language similar in syntax to programming languages like
C/C++ and Java. It provides a set of data types, built-in variables, control
structures, and functions that you can use to perform a wide variety of event
management tasks. It also allows you to create your own variables and functions,
as in other programming languages.

JavaScript a scripting programming language commonly used to add interactivity
to web pages. It can also be used in browser environments. JavaScript uses the
same programming concepts that are used in IPL to write policies. For more
information about JavaScript syntax, see http://www.w3schools.com/js/
default.asp.

Data types
The policy-level data type is a different entity than the data types that are part of
the data model.

Chapter 1. Getting started 3

http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp

For more information about policy data types, see “Policy-level data types” on
page 11.

Variables
IPL and JavaScript have built-in variables, and user-defined variables.

For more information about variables, see “Variables” on page 15.

Operators
Operators are a special type of built-in function that modifies or compares a value
or values.

For more information about operators, see “Operators” on page 19.

Control structures
Control structures specify which code statements are executed under which
conditions, and at what times.

For more information about control structures, see “Control structures” on page 22.

Functions
The Impact Policy Language (IPL) and JavaScript support built-in functions and
user-defined functions.

For more information about functions, see “Functions” on page 25.

External function libraries
Function libraries is a feature you can use to create a set of stored functions that
can be called from any policy.

For more information about external function libraries, see “Function libraries” on
page 30.

Exception handling
You can raise and handle policy-level exceptions.

For more information about exceptions, see “Exceptions” on page 32.

Clear cache syntax
The policy language provides a syntax that you can use to clear the cache
associated with a particular data type.

Netcool/Impact stores information about data types in another, system level data
type named Types. Each data item in Types represents a data type that is defined
in the system.

To clear a data type cache, you first call the GetByFilter or the GetByKey function
and retrieve the data item from Types that corresponds to the data type. The key
value for data items in Types is the data type name. Then you set the clearcache
member variable associated with the data item to true.

The following example shows how to clear the cache of a data type named User:

4 Netcool/Impact: Policy Reference Guide

DataType = "Types";
Key = "User";
MyTypes = GetByKey(DataType, Key, 1);

MyTypes[0].clearcache = true;

Date/Time patterns
The policy language provides a date/time pattern syntax that you can use with the
LocalTime function to format date/time strings and with the ParseDate function to
convert formatted strings to the number of seconds in UNIX time.

The pattern syntax consists of a set of symbols that specify how the date/time is
formatted. You use the symbols alone, or with other formatting characters, such as
: and /.

Symbols

The following table shows the symbols used in date/time patterns.

Table 1. Date/Time pattern symbols

Symbol Description

G Era

y Year

M Month

d Day

h Hour

H Hour

m Minute

s Second

S Millisecond

E Day in week

D Day in year

F Day of week in month (for example, if day is third Friday in a month,
value is 3).

w Week in year

W Week in month

a AM/PM marker

k Hour in a day

K Hour in AM/PM

z Time zone

Examples

The following example shows how to return the given number of seconds in
various formats using LocalTime.
Seconds = GetDate();

Time = LocalTime(Seconds, "MM/dd/yy");

Chapter 1. Getting started 5

Log(Time);

Time = LocalTime(Seconds, "HH:mm:ss");
Log(Time);

This example prints the following message to the policy log:
06/19/03
13:11:24

Policy example
The following policy is a complete example of a Netcool/Impact policy.

This policy accepts incoming event information from an event reader service and
uses this information to look up affected internal customers in an external
database. The policy then sends an e-mail to each customer and reports the event
data to a third-party help desk system using the web services API provided by that
application.
// Look up customers affected by the event in the external database.
// Customer is name of a Netcool/Impact data type associated with
// the database table that stores customer data.

DataType = "Customer";
Filter = "Server =’" + EventContainer.Node + "’";
CountOnly = false;

Customers = GetByFilter(DataType, Filter, CountOnly);

// Send an e-mail to each customer with notification of the event

Count = Length(Customers);

While (Count > 0) {

Address = Customer.Email;
Subject = "Change in server status";
Message = "Netcool/Impact has detected a change in status for server " \

+ EventContainer.Node " + ". Summary is " + EventContainer.Summary;
Sender = "Netcool/Impact";
ExecuteOnQueue = false;

Count = Count -1;
SendEmail(Address, Subject, Message, Sender, ExecuteOnQueue);

}

// Report the event details to the third-party help desk system using
// the provided web services API.

WSSetDefaultPKGName("helpdesk");

WebServiceName = "HelpDeskService";
WebServicePort = "HelpDeskPort";
EndPoint = "http://helpdesk_01/webservice/";
Method = "submitTicket";

Params = { GetDate(), \
"Netcool/Impact", \
EventContainer.Node, \
EventContainer.Summary };

Results = WSInvoke(WebServiceName, WebServicePort, EndPoint, Method, Params);

6 Netcool/Impact: Policy Reference Guide

// Print results of the web services call to the policy log.

Log("Result of web services call: " + Results);

Policy triggers
A policy trigger is a component or feature of Netcool/Impact that is capable of
starting a policy.

Some policy triggers, like event readers, are controlled by Netcool/Impact. You
control other policy triggers, like the nci_trigger script and the graphical user
interface (GUI).

Event readers as policy triggers
An event reader service queries a Netcool/OMNIbus ObjectServer or other event
source at intervals and retrieves new and updated events.

It then determines whether any of the retrieved events are related to a policy that
you have defined and then sends those events to the event processor service for
handling. The event processor launches the appropriate policy in response to each
incoming event and passes the event data to the policy in the form of an event
container variable.

Database listeners as policy triggers
A database listener listens for incoming messages from an SQL database data
source and then triggers policies based on the incoming message data.

Currently listener services for use with Oracle databases are supported.

E-Mail readers as policy triggers
The e-mail reader service queries an IMAP or POP e-mail server at intervals for
new e-mail messages.

When the service retrieves a new e-mail, it converts the e-mail contents to the
Impact event format and then determines whether the event matches one of the
policies that you have defined. If the event matches a policy, the e-mail reader
sends it to the event processor service for handling. The event processor launches
the appropriate policy and passes the event data to the policy in the form of an
event container variable.

Jabber readers as policy triggers
The Jabber reader service listens for incoming instant messages.

When the service receives a message, it converts the message contents to the event
format and then sends the event to the event processor service for handling. The
event processor launches the policy specified in the Jabber reader configuration
and passes the event data to the policy in the form of an event container variable.

Web services listeners as policy triggers
The Web services listener listens at an HTTP port for incoming SOAP/XML
messages.

When the service receives a message, it converts its contents to policy runtime
parameters and passes them to the event processor service for handling. The event

Chapter 1. Getting started 7

processor launches the policy specified by the web services listener configuration
and passes the event data in the form of policy runtime variables.

JMS listeners as policy triggers
The JMS listener service listens for incoming JMS messages.

When the service receives a message, it converts its contents to the event format
and sends them to the event processor service for handling. The event processor
launches the policy specified in the JMS listener configuration and passes the event
data to the policy in the form of an event container variable.

nci_trigger
The nci_trigger script sends event data and a policy name to the event processor
for handling.

The event processor launches the policy and passes the event data to the policy in
the form of an event container variable.

Running policies in the graphical user interface
You can run policies from within the GUI.

You can use the GUI to pass runtime parameters to the policy, but you cannot pass
event data. Use of the GUI for running policies is for testing purposes only.

Policy editor
The GUI provides a policy editor that you can use to create and edit policies.

The policy editor offers a text editor with syntax highlighting, a function browser,
a syntax checker, a tree viewer, and other utilities to make it easy to manage
policies. You can also write policies in an editor of your choice and then upload
them into Netcool/Impact. After they are uploaded, you can edit them and check
the syntax using the policy editor.

Note: If you create and edit a policy using an external editor of your choice, you
must check its syntax using the nci_policy script before you run it. For more
information about the nci_policy script, see the Administration Guide.

8 Netcool/Impact: Policy Reference Guide

Chapter 2. Policy fundamentals

This chapter contains information about basic concepts needed to create policies
using either the Impact Policy Language (IPL) or JavaScript.

Differences between IPL and JavaScript
When writing policies using IPL or JavaScript there are a number of differences.
Use the following table as a reference.

Table 2. IPL and JavaScript differences

IPL JavaScript See

IPL is not case-sensitive. JavaScript is case-sensitive, keep
this in mind when you are creating
variables, statements, objects, and,
functions.

“RExtractAll” on
page 136

When creating Arrays, in IPL you
must use {} curly braces to assign
array values.

In JavaScript, you must use []
square braces to assign array
values.

v “Array” on
page 12

v “JavaCall” on
page 120

In IPL, the escape character can be
either \\s or \s.

In JavaScript, the escape character
must be \\s.

“RExtractAll” on
page 136

In IPL, integers return as whole
numbers, for example 1.

In JavaScript, integers are Float as
a result, numbers always display
with decimals for example 1
becomes 1.0.

v “Distinct” on
page 95

v “EvalArray”
on page 97

v “String
operators” on
page 21

ClassOf

v If you pass an integer variable to
ClassOf it returns as long in IPL.

v If you pass a context variable to
ClassOf, it returns as

BindingsVarGetSettable in IPL.

v If you pass an OrgNode variable
to ClassOf, it returns as OrgNode
in IPL.

v If you pass an integer variable to
ClassOf it returns as double in
JavaScript.

v If you pass a context variable to
ClassOf, it returns as
JavaScriptScriptableWrapper in
JavaScript.

v If you pass an OrgNode variable
to ClassOf, it returns as
VarGetSettable in JavaScript.

“ClassOf” on
page 81

Event Container

If you are using IPL, you can
optionally reference event field
variables using the dot notation or
the @ notation. The @ notation is a
special shorthand that you can use
to reference members of
EventContainer instead of spelling
out the full name @Identifier.

If you are using JavaScript, you
must use the dot notation
EventContainer.Identifier.

“EventContainer”
on page 16

© Copyright IBM Corp. 2006, 2014 9

Table 2. IPL and JavaScript differences (continued)

IPL JavaScript See

Exit

In IPL, when you use Exit in a
user-defined function it exits that
function, and the policy continues.

In JavaScript, when you use Exit
in a user-defined function in a
policy it exits the entire policy. If
you want to stop a function in a
JavaScript policy you must use the
return command in the policy.

“Exit” on page
98.

Float

In IPL, the float function converts
an integer, string, or Boolean
expression to a floating point
number.

JavaScript does not add any
decimal points to the results for
integers and Boolean expressions
that are used with the Float
function.

“Float” on page
100.

Float

In IPL, the Float function returns
10.695672.

In JavaScript, the Float function
returns extra precision, for example
10.695671999999998 instead of
10.695672 for the function Eval.

“Eval” on page
97.

Eval

In IPL, Integer division of 10/5 is
2.0.

In JavaScript, integer division of
10/5 is 2 for the function Eval.

“Eval” on page
97

JavaCall

In IPL numbers are whole.

JavaScript uses doubles for the
numbers, when using JavaScript,
for a JavaCall that needs an
integer argument, you must use
the Integer.parseInt JavaCall to
create an actual integer.

“JavaCall” on
page 120

Like

In IPL supports the Like operator.
For example,

teststring LIKE ".*abc.*";

JavaScript does not use the Like
operator. The equivalent example
is

/.*abc.*/.test(teststring);

“Comparison
operators” on
page 21

Customize data output to follow the JavaScript standard
Fix Pack 2

A property that is called impact.featuretostringassource.enabled can be added
to the NCI_server.props file. When the property is set to true, it converts the data
into a string to enable the data output by the Log function to be the same in
JavaScript and IPL.

The default value of the property is true. When the property is set to false, the
data follows the JavaScript standard and the data output by the Log function is not
the same as in IPL. To make the output the same in JavaScript and IPL the same,
customer must use the Object.toSource() function in JavaScript.

The customers, who use JavaScript and want to follow the JavaScript standard, can
change the value of this property to false.

Add the following property to the NCI_server.props file.

To enable the data output by the Log function to be the same in JavaScript and
IPL, make the value true.

10 Netcool/Impact: Policy Reference Guide

impact.featuretostringassource.enabled=true

To follow the JavaScript standard, make the value false.
impact.featuretostringassource.enabled=false

Policy-level data types
The policy-level data type is a different entity than the data types that are part of
the data model.

When you are writing policies there are two categories of data types: simple data
types and complex data types. The simple data types are integer, float, string,
boolean, and date. The complex data types are array, context, data item, and event
container.

Simple data types
Simple data types represent a single value.

Simple data types used to create policies:

Integer

The integer data type represents a positive whole number or its negative
value. Examples of integers are 0, 1, 2, 3 and 4.

Float

The float data type represents a floating-point or decimal number.
Examples of floats are 0.1243 and 12.245.

String

A string represents a sequence of characters, up to a length of 4 KB. In a
policy, you enclose a string literal in either double or single quotation
marks. An example of a string is abcdefg.

Boolean

Boolean represents a value of true or false. In a policy, you specify a
boolean value using the true and false keywords.

Date

A date is a formatted string that represents a time or a calendar date. IPL
and JavaScript use the following format for dates: YYYY-MM-DD HH:MM:SS.n,
where n is a millisecond value. The date string can be enclosed in double
or single quotation marks.

You specify the n millisecond value in date fields when you add a data
item to a data type or when you update a data item. If the date does not
have a millisecond value, specify 0. You also specify the millisecond value
when you work with date fields in the GUI.

The following policy example shows how to add a new data item to a data type
that contains a date field:
MyContext = NewObject();
MyContext.FirstName = "Joe";
MyContext.LastName = "Example";
MyContext.Id = "1234";
MyContext.Created = "2006-07-31 11:12:13.4";

AddDataItem("Customer", MyContext);

Chapter 2. Policy fundamentals 11

Complex data types
Complex data types represent sets of values.

Context
Context is a data type that you can use to store sets of data.

Contexts are like the struct data type in C/C++. Contexts can be used to store
elements of any combinations of data types, including other contexts and arrays.
This data is stored in a set of variables called member variables that are
"contained" inside the context. Member variables can be of any type, including
other contexts.

You reference member variables using the dot notation. This is also the way that
you reference member variables in a struct in languages like C and C++. In this
notation, you specify the name of the context and the name of the member variable
separated by a period (.). You use this notation when you assign values to member
variables and when you reference the variables elsewhere in a policy.

Important: A built-in context is provided, called the policy context, that is created
automatically whenever the policy is run. The policy context contains all of the
variables used in the policy, including built-in variables.

Unlike arrays and scalar variables, you must explicitly create a context using the
NewObject function before you can use it in a policy. You do not need to create the
member variables in the context. Member variables are created automatically the
first time you assign their value.

The following example shows how to create a new context, and how to assign and
reference its member variables:
MyContext = NewObject();
MyContext.A = "Hello, World!";
MyContext.B = 12345;

Log(MyContext.A + ", " + MyContext.B);

This example prints the following message to the policy log:
Hello, World!, 12345

The following policy shows how to create a context called MyContext and assign a
set of values to its member variables.
MyContext
= NewObject();

MyContext.One = "One";
MyContext.Two = 2;
MyContext.Three = 3.0;

String1 = MyContext.One + ", " + MyContext.Two + ", " + MyContext.Three;

Log(String1)

When you run this policy, it prints the following message to the policy log:
One, 2, 3.0

Array
The array is a native data type that you can use to store sets of related values.

12 Netcool/Impact: Policy Reference Guide

An array in Netcool/Impact represents a heterogeneous set of data, which means
that it can store elements of any combination of data types, including other arrays
and contexts. The data in arrays is stored as unnamed elements rather than as
member variables.

In IPL you assign values to arrays using the curly braces notation. This notation
requires you to enclose a comma-separated list of the values to assign in curly
braces. The values can be specified as literals or as variables whose values you
have previously defined in the policy:
arrayname = {element1, element2, elementn}

Attention: Arrays in IPL and JavaScript are zero-based, which means that the
first element in the array has an index value of 0.

In JavaScript, use the square braces notation to assign array values as a
comma-separated series of numeric, string, or boolean literals:
arrayname = [element1, element2, elementn]

Important: You can create an array of any size by manually defining its elements.
You cannot import it from a file. You cannot have an array in an array unless it is
a multi-dimensional array.

You access the value of arrays using the square bracket notation. This notation
requires you to specify the name of the array followed by the index number of the
element enclosed in square brackets. Use the following syntax to access the
elements of a one-dimensional array and a multi-dimensional array:
arrayname[element index]

arrayname[first dimension element index][second dimension element index]

Examples

Here is an example of a one-dimensional array in IPL:
MyArray = {"Hello, World!", 12345};
Log(MyArray[0] + ", " + MyArray[1]);

Here is an example of a one-dimensional array in JavaScript:
MyArray = ["Hello, World!", 12345];
Log(MyArray[0] + ", " + MyArray[1]);

It prints the following text to the policy log:
Hello.World!, 12345

Here in an example of a two-dimensional array in IPL:
MyArray = {{"Hello, World!", 12345}, {"xyz", 78, 7, "etc"}};
Log(MyArray[0][0] + "." + MyArray[1][0]);

Here in an example of a two-dimensional array in JavaScript:
MyArray = [["Hello, World!", 12345], ["xyz", 78, 7, "etc"]];
Log(MyArray[0][0] + "." + MyArray[1][0]);

It prints the following text to the policy log:
Hello.World!.xyz

This example policy in IPL, uses the same two-dimensional array and prints the
label and the value of an element to the parser log:

Chapter 2. Policy fundamentals 13

MyArray = {{"Hello, World!", 12345}, {"xyz", 78, 7, "etc"}};
log("MyArray is " + MyArray);
log("MyArray Length is " + length(MyArray));
ArrayA = MyArray[0];
log("ArrayA is " + ArrayA + " Length is " + length(ArrayA));
i = 0;
While(i < length(ArrayA)) {

log("ArrayA["+i+"] = " + ArrayA[i]);
i = i+1;

}
ArrayB = MyArray[1];
log("ArrayB is " + ArrayB + " Length is " + length(ArrayB));
i = 0;
While(i < length(ArrayB)) {

log("ArrayB["+i+"] = " + ArrayB[i]);
i = i+1;

}

This example policy in JavaScript, uses the same two-dimensional array and prints
the label and the value of an element to the parser log:
MyArray = [["Hello, World!", 12345], ["xyz", 78, 7, "etc"]];
log("MyArray is " + MyArray);
log("MyArray Length is " + Length(MyArray));
ArrayA = MyArray[0];
Log("ArrayA is " + ArrayA + " Length is " + Length(ArrayA));
i = 0;
while(i < Length(ArrayA)) {

Log("ArrayA["+i+"] = " + ArrayA[i]);
i = i+1;

}
ArrayB = MyArray[1];
Log("ArrayB is " + ArrayB + " Length is " + Length(ArrayB));
i = 0;
while(i < length(ArrayB)) {

Log("ArrayB["+i+"] = " + ArrayB[i]);
i = i+1;

}

Here is the output in the parser log:
ArrayA[0] = Hello World!
ArrayA[1] = 12345

In the following policy, you assign a set of values to arrays and then print the
values of their elements to the policy log.
Array1 = {"One", "Two", "Three", "Four",
"Five"};
Array2 = {1, 2, 3, 4, 5};
Array3 = {"One", 2, "Three", 4, "Five"};

String1 = "One";
String2 = "Two";
Array4 = {String1, String2};

Log(Array1[0]);
Log(Array2[2]);
Log(Array3[4]);
Log(Array4[1]);

Log(CurrentContext());

Here, you assign sets of values to four different arrays. In the first three arrays,
you assign various string and integer literals. In the fourth array, you assign
variables as the array elements.

14 Netcool/Impact: Policy Reference Guide

When you run the policy, it prints the following message to the policy log:
One
3
4
Two
"Prepared with user supplied parameters "=(String2=Two, ActionType=1,
String1=One, EventContainer=(), ActionNodeName=TEMP, Escalation=6,
Array4={One, Two}, Array3={One, 2, Three, 4, Five}, Array2={1, 2,
3, 4, 5},
Array1={One, Two, Three, Four, Five})

Data item
The data item is a policy-level data type that is used to represent data items in the
Netcool/Impact data model.

Like a context, a data item consists of a set of named member variables. In a data
item, however, the member variables have a one-to-one correspondence with fields
in the underlying data source. As with contexts, you reference the member
variables using the dot notation.

Many built-in functions return an array of data items. These functions include
GetByFilter, GetByKey, GetByLinks, GetHibernatingPolicies, and
GetScheduleMembers.

The following example shows how to assign and reference values in a data item:
MyCustomers = GetByKey("Customer", 12345, 1);

Log(MyCustomers[0].Name + ", " + MyCustomer[0].Location);

MyCustomers[0].Location = "New Location";

Data items store data by reference, rather than by value. When you change the
value of a member variable in a data item, Netcool/Impact immediately changes
the value in the underlying data source. Either by directly accessing it from the
internal data repository or by sending an SQL UPDATE statement to the data source
(for SQL database data sources).

Event container
The event container is a policy-level data type that represents an event.

Like contexts and arrays, an event container consists of a set of named member
variables. In an event container, the member variables have a one-to-one
correspondence with fields in the associated event source. As with contexts and
arrays, you reference the member variables using the dot notation.

You can create your own event container in a policy by calling the NewEvent
function. The following example shows how to create an event container, and how
to assign and reference its member variables.
MyEvent = NewEvent("OMNIbusEventReader");
MyEvent.Node = "ORACLE_01";
MyEvent.Summary = "System not responding to ping request";

Variables
IPL and JavaScript have built-in variables, and user-defined variables.

Chapter 2. Policy fundamentals 15

You use built-in variables to handle data retrieved from external data sources and
to handle event data. The built-in variables are DataItem, DataItems Num, and
EventContainer.

You can use user-defined variables to store values during the lifetime of a policy in
the same way that you use variables in other programming languages.

You also use variables to pass values to functions. The variable is updated after the
function is complete. As a result, you can only use variables to pass values to
functions.

Built-in variables
Built-in variables during policy runtime are automatically populated and managed.

IPL and JavaScript have the following built-in variables:
v EventContainer
v DataItems
v DataItem
v Num

EventContainer
EventContainer is a built-in variable of the event container data type that
represents an incoming event.

EventContainer has a set of member variables that correspond to fields in the
incoming event. It also contains two predefined member variables. You can use
these variables to specify the state of the event when you return it to the event
source using the ReturnEvent function.

When a policy is triggered by an event reader, an email reader, or another
mechanism, the event processor service creates a new EventContainer and
populates its member variables with the field values in the event. The event
processor creates one new member variable for each field in the event and assigns
it the field value.

If you are using IPL, you can optionally reference event field variables using the
dot notation or the @ notation. The @ notation is a special shorthand that you can
use to reference members of EventContainer instead of spelling out the full name.

If you are using JavaScript you must use the dot notation
EventContainer.Identifier.

The following example shows the use of the optional @ notation to reference event
field variables for IPL.
Log(@ActionKey);
Log(@ActionKey + ":" + @Summary);
@Summary = @Summary + ": Updated by Netcool/Impact";

The following example shows the use of the dot notation
EventContainer.Identifier for JavaScript or IPL
Log(EventContainer.ActionKey);
Log(EventContainer.ActionKey + ":" + EventContainer.Summary);
EventContainer.Summary = EventContainer.Summary + ": Updated by Netcool/Impact";

16 Netcool/Impact: Policy Reference Guide

Event state variables are the two predefined member variables that you can use to
specify the state of an event when you return it to the event source using the
ReturnEvent function. The policy engine does not automatically populate these
variables when the policy is triggered.

Table 3 shows the event state variables.

Table 3. Event state variables

Variable Description

EventContainer.JournalEntry Set this field to add a new journal entry when you return
an updated event to the event source. You specify the
contents of the journal entry in single quotation marks. If
you want to include newline or tab characters, you
concatenate them separately with the string and enclose
them in double quotation marks. You can add only journal
entries to events when you update them from within a
policy. You cannot add journal entries to new events.

EventContainer.DeleteEvent Set this field to true to delete the event when you return it
to the event source.

The following example shows how to add a new journal entry when you return an
event.
// Set the EventContainer.JournalEntry variable
EventContainer.JournalEntry = ’Modified on ’ + LocalTime(GetDate()) \

+ "\r\n" + ’Modified by Netcool/Impact.’;

// Return the event to the event source
ReturnEvent(EventContainer);

The following example shows how to delete an event when you return it to the
event source.
// Set the EventContainer.DeleteEvent variable
EventContainer.DeleteEvent = true;

// Return the event to the event source
ReturnEvent(EventContainer);

DataItems
DataItems is a built-in variable that stores an array of data items.

The DataItems variable is populated automatically by the functions that return data
item arrays, such as GetByFilter, GetByKey, GetByLinks, GetHibernatingPolicies,
and GetScheduleMember. You can use these functions to assign the returned data
item array to other variables.

The following example shows the use of DataItems in a policy.
// Call GetByFilter and pass the name of a data type,
// and a filter as input parameters. GetByFilter
// assigns the matching data items to the DataItems variable.

DataType = "Node";
Filter = "Location = ’New York’";
CountOnly = false;

GetByFilter(DataType, Filter, CountOnly);

// For each data item referenced by DataItems,
// print the value of the Name field to the policy

Chapter 2. Policy fundamentals 17

// log.

I = Num;
While (I > 0) {

Log(DataItems[I-1]);
I = I - 1;

}

DataItem
DataItem is a built-in variable that references the first element in the DataItems
array.

You can use DataItem as shorthand in instances where you know the DataItems
will contain only one element, or when you want to handle only the first element
in the array. DataItem is equivalent to DataItems[0].

Num
Num is a built-in variable that stores the number of elements currently stored in the
DataItems array.

You can use Num to count the number of data items returned by functions like
GetByFilter, GetByKey, and GetByLinks, or you can use it to iterate through the
DataItems array in a policy.

Note: The Num variable is supported for compatibility with earlier versions only. To
retrieve the number of elements in an array returned by GetByFilter, GetByKey, or
GetByLinks, use the Length function. For more information, see “Length” on page
124.

The following example shows how to use the Num variable in a policy.
// Call GetByFilter and pass the name of a data type,
// and a filter as input parameters. GetByFilter
// assigns the matching data items to the DataItems variable.

DataType = "Node";
Filter = "Location = ’New York’";
CountOnly = false;

GetByFilter(DataType, Filter, CountOnly);

// For each data item referenced by DataItems,
// print the value of the Name field to the policy
// log.

I = Num;
While (I > 0) {

Log(DataItems[I-1]);
I = I - 1;

}

User-defined variables
User-defined variables are variables that you define when you write a policy.

You can use any combination of letters and numbers as variable names as long as
the first variable starts with a letter:

You do not need to initialize variables used to store single values, such as strings
or integers. For context variables, you call the NewObject function, which returns a
new context. For event container variables, you call NewEvent. You do not need to
initialize the member variables in contexts and event containers.

18 Netcool/Impact: Policy Reference Guide

The following example shows how to create and reference user-defined variables:
MyInteger = 1;
MyFloat = 123.4;
MyBoolean = True;
MyString = "Hello, World!";

MyContext = NewObject();
MyContext.Member = "1";

MyEvent = NewEvent();
MyEvent.Summary = "Event Summary";

Log(MyInteger + ", " + MyEvent.Summary);

In the example in this section, you create a set of variables and assign values to
them. Then, you use the Log function in two different ways to print the value of
the variables to the policy log.

The first way you use Log is to print out each of the values as a separate call to the
function. The second way is to print out all the variables in the policy context at
once, using the CurrentContext function. The CurrentContext function returns a
string that contains the names and values of all the variables currently defined in
the policy.
VarOne = "One";
VarTwo = 2;
VarThree = 3.0;
VarFour = VarOne + ", " + VarTwo + ", " + VarThree;

Log(VarOne);
Log(VarTwo);
Log(VarThree);
Log(VarFour);

Log(CurrentContext());

When you run this policy, it prints the following message to the policy log:
One
2
3.0
One, Two, Three
"Prepared with user supplied parameters "=(Escalation=5, EventContainer=(),
VarTwo=Two, VarOne=One, ActionNodeName=TEMP, VarFour=One, Two, Three,
VarThree=Three, ActionType=1)

As shown above, you do not have to declare variables before assigning their values
in the way that you do in languages like C/C++ and Java. Arrays and scalar
variables like integers or strings are created automatically the first time you assign
a value to them. Contexts and event containers, however, must be explicitly created
using the NewObject and NewEvent functions, as described later in this guide.

Operators
Operators are a special type of built-in function that modifies or compares a value
or values.

IPL and JavaScript support a standard set of assignment, mathematical,
comparison, boolean, and string operators. You use them to assign and retrieve
values from variables, perform mathematical operations, compare values, and
concatenate strings. IPL and JavaScript also define a set of operators that you can
use to perform bitwise operations.

Chapter 2. Policy fundamentals 19

Assignment operator
The assignment operator is the equal sign =.

Use the single equal sign for assigning values to variables. Use the double equal
sign == to compare to values in boolean expression.

The following examples show the use of the assignment operator:
a = 3;
b = "This is a test";
c = {"One", 2, true};
MyContext.a = "Test";
MyArray[0] = "Another test";
EventContainer.Summary = "Node " + EventContainer.Node + " not responding";

Bitwise operators
IPL and JavaScript support the use of the following Bitwise operators.

Table 4. Bitwise operators

Operator Description Example

& AND: Returns a one in each
bit position for which the
corresponding bits of both
operands are ones.

a & b

| OR: Returns a one in each bit
position for which the
corresponding bits of either
or both operands are ones.

a | b

^ XOR: Returns a one in each
bit position for which the
corresponding bits of either
but not both operands are
ones.

a ^ b

Boolean operators
IPL and JavaScript support a range of boolean operators.

Table 5. Boolean operators

Operator Description

|| or

&& and

! not

The following examples show the use of the boolean operators.
If ((a == 4) || (b <= 3)) ...
If ((a = "Test") && (b != "Test")) ...
If (!MyBool) ...

20 Netcool/Impact: Policy Reference Guide

Comparison operators
IPL and JavaScript support a range of comparison operators.

Table 6. Comparison operators

Operator Description

< Less than

> Greater than

== Equal to

<= Less than or equal to

>= Greater than or equal to

!= Not equal to

LIKE Performs a comparison using Perl 5 regular
expressions. JavaScript does not have the
LIKE operator.

The following examples show the use of the comparison operators in IPL.
If ((a >= 4) || (b <= 3)) ...
If ((a == "Test") && (b != "Test")) ...
If (a LIKE "New York.*") ...

Mathematic operators
IPL and JavaScript support a range of mathematic operators.

Table 7. Mathematic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

Note: The division operator always returns a floating-point value. Even if the
dividend and the divisor are integers and if the quotient returned by the operation
has no fractional value.

The following examples show the use of the mathematic operators.
a = 1 + 2;
b = 4 - 3;
c = 6 * 4;
d = 6 / 4;
e = 8 % 5;

String operators
IPL and JavaScript support the use of the addition operator (+) for concatenating
strings.

One common operation is to concatenate string values within an SQL filter. When
you concatenate strings within a filter, make sure that all string literals are
enclosed in single quotation marks within the resulting filter. For more information
about SQL filters, see “SQL filters” on page 69.

Chapter 2. Policy fundamentals 21

Examples of using string operators

Note:

The following example shows how to concatenate strings using the addition
operator.
MyString1 = "This is a";
MyString2 = "test.";
MyString3 = MyString1 + " " + MyString2;
Log(MyString3);

This example prints the following message to the policy log:
Parser log: This is a test.

The following example shows how to concatenate strings within an SQL filter.
// Call GetByFilter and pass a data type name
// and a filter as input parameters

DataType = "Node";
Filter = "NodeName = ’" + EventContainer.Node + "’";
CountOnly = false;

MyNode = GetByFilter(DataType, Filter, CountOnly);

Yet another example demonstrates how to add a string, to an array:
MyArray = {};
MyString = ’test’;
MyArray = MyArray + MyString;

This will add MyString as a new element to the Array.

Also in an Array you can remove an element using the Subtraction operator.
If you do the following:

MyArray = {test, test2};
MyString = ’test’;
MyArray = MyArray - MyString;
log(MyArray);

The resulting array contains only the test2 string.

Control structures
Control structures specify which code statements are executed under which
conditions, and at what times.

IPL and JavaScript use two control structures: If and While. You use the If
structure to perform branching operations. You use the While structure to loop
over a set of instructions until a certain condition is met.

If statements
You use the if statement to perform branching operations.

Use the if statement to control which statements in a policy are executed by
testing the value of an expression to see if it is true. The if statement in the Impact
Policy Language is the same as the one used in programming languages like
C/C++ and Java.

22 Netcool/Impact: Policy Reference Guide

The syntax for an if statement is the if keyword followed by a Boolean expression
enclosed in parentheses. This expression is followed by a block of statements
enclosed in curly braces. Optionally, the if statement can be followed by the else
or elseif keywords, which are also followed by a block of statements.
if (condition){

statements
} elseif (condition){

statements
} else {

statements
}

Where condition is a boolean expression and statements is a group of one or
more statements. For example:
if (x == 0) {

Log("x equals zero");
} elseif (x == 1){

Log("x equals one");
} else {

Log("x equals any other value.");
}

When the if keyword is encountered in a policy, the Boolean expression is
evaluated to see if it is true. If the expression is true, the statement block that
follows is executed. If it is not true, the statements is skipped in the block. If an
else statement follows in the policy, the corresponding else statement block is
executed.

In this example policy, you use the if statement to test the value of the Integer1
variable. If the value of Integer1 is 0, the policy runs the statements in the
statement block.
Integer1 = 0;

if (Integer1 == 0) {
Log("The value of Integer1 is zero.");

}

When you run this policy, it prints the following message to the policy log:
The value of Integer1 is zero.

Another example shows how to use the else statement. Here, you set the value of
the Integer1 variable to 2. Since the first test in the if statement fails, the
statement block that follows the else statement is executed.
Integer1 = 2;

if (Integer1 == 1) {
Log("The value of Integer1 is one.");

} else {
Log("The value of Integer1 is not one.");

}

When you run this example, it prints the following message to the policy log:
The value of Integer1 is not one.

While statements
You use the while statement to loop over a set of instructions until a certain
condition is met.

Chapter 2. Policy fundamentals 23

The while statement allows you to repeat a set of operations until a specified
condition is true. The while statement in the Impact Policy Language is the same
as the one used in programming languages like C, C++, and Java.

The syntax for the while statement is the while keyword followed by a Boolean
expression enclosed in parentheses. This expression is followed by a block of
statements enclosed in curly braces.
while (condition) { statements }

where condition is a boolean expression and statements is a group of one or more
statements. For example:
I = 10;
while(I > 0) {

Log("The value of I is: " + I);
I = I - 1;

}

When the while keyword is encountered in a policy, the Boolean expression is
evaluated to see if it is true. If the expression is true, the statements in the
following block are executed. After the statements are executed, Netcool/Impact
again tests the expression and continues executing the statement block repeatedly
until the condition is false.

The most common way to use the while statement is to construct a loop that is
executed a certain number of times depending on other factors in a policy. To use
the while statement in this way, you use an integer variable as a counter. You set
the value of the counter before the while loop begins and decrement it inside the
loop. The While statement tests the value of the counter each time the loop is
executed and exits when the value of the counter is zero.

The following example shows a simple use of the while statement:
Counter = 10;

while (Counter > 0) {
Log("The value of Counter is " + Counter);
Counter = Counter - 1;

}

Here, you assign the value of 10 to a variable named Counter. In the while
statement, the policy tests the value of Counter to see if it is greater than zero. If
Counter is greater than zero, the statements in the block that follows is executed.
The final statement in the block decrements the value of Counter by one. The
While loop in this example executes 10 times before exiting.

When you run this example, it prints the following message to the policy log:
The value of Counter is 10
The value of Counter is 9
The value of Counter is 8
The value of Counter is 7
The value of Counter is 6
The value of Counter is 5
The value of Counter is 4
The value of Counter is 3
The value of Counter is 2
The value of Counter is 1

24 Netcool/Impact: Policy Reference Guide

The following example shows how to use the While statement to iterate through
an array. You often use this technique when you handle data items retrieved from
a data source.
MyArray = {"One", "Two", "Three", "Four"};

Counter = Length(MyArray);

while (Counter > 0) {
Index = Counter - 1;
Log(MyArray[Index]);
Counter = Counter - 1;
}

Here, you set the value of Counter to the number of elements in the array. The
While statement loops through the statement block once for each array element.
You set the Index variable to the value of the Counter minus one. This is because
arrays in IPL are zero-based. This means that the index value of the first element is
0, rather than 1.

When you run this example, it prints the following message to the policy log:
Four
Three
Two
One

In these examples, when you use this technique to iterate through the elements in
an array, you access the elements in reverse order. To avoid doing this, you can
increment the counter variable instead of decrementing it in the loop. This requires
you to test whether the counter is less than the number of elements in the array
inside the While statement.

The following example shows how to loop through an array while incrementing
the value of the counter variable.
MyArray = {"One", "Two", "Three", "Four"};

ArrayLength = Length(MyArray);
Counter = 0;

while (Counter < ArrayLength) {
Log(MyArray[Counter]);
Counter = Counter + 1;

}

When you run this policy, it prints the following message to the policy log:
One
Two
Three
Four

Functions
The Impact Policy Language (IPL) and JavaScript support built-in functions and
user-defined functions.

The built-in functions are the functions, that are immediately available after the
product is installed. Built-in functions perform common high-level and low-level
tasks such as, sending an event to the ObjectServer or using regular expressions to

Chapter 2. Policy fundamentals 25

extract a substring that matches this pattern. Examples of built-in functions are
web services functions and SNMP functions. You can use the IPL or JavaScript to
create and use function libraries.

User-defined functions are functions that you can use to organize the custom code
in your policies.

Web services functions
Web services functions are functions that you use with the web services DSA.

You can use the following functions a to send messages to a web service provided
by another application and to handle the message replies.
v WSInvoke

v WSInvokeDL

v WSNewArray

v WSNewEnum

v WSNewObject

v WSNewSubObject

v WSSetDefaultPKGName

v WSDMGetResourceProperty

v WSDMInvoke

v WSDMUpdateResourceProperty

For reference information about web services functions, see relevant sections in
Chapter 6, “Functions,” on page 73. For more information about web services DSA,
see the DSA Reference Guide.

SNMP functions
SNMP functions are functions that you use with the SNMP DSA.

You use these functions to send data to and retrieve data from SNMP agents. You
can also use SNMP functions to send traps and notifications to SNMP managers.

The following SNMP functions are provided:
v SnmpGetAction
v SnmpGetNextAction
v SnmpSetAction
v SnmpTrapAction

For reference information about provided SNMP functions, see relevant sections in
Chapter 6, “Functions,” on page 73. For more information about the SNMP DSA,
see the DSA Reference Guide.

Java Policy functions
With Java Policy functions, a policy can run a Java program or call any Java
method if their Java classes are available from the Netcool/Impact runtime class
path.

Before you can use Java Policy functions, you must make the Java classes available
to Netcool/Impact during run time. To make the Java classes available, complete
the following steps:

26 Netcool/Impact: Policy Reference Guide

1. Copy the Java classes to the $IMPACT_HOME/dsalib directory.
2. Restart the Impact Server to load the Java archive (JAR) files.

You must repeat this procedure for each Impact Server because the Java class files
in the $IMPACT_HOME/dsalib directory are not replicated between servers.

Here are some of the most obvious scenarios where you would use these functions:
v To provide functionality that is not supported by the Impact Policy Language

(IPL). By using the Java Policy functions you can access java.io.* library of Java
API and all other functions the Java API provides.

v To use third-party libraries or APIs within policies. Some systems have a special
communication protocols to access data and provide a Java library which
implements its communication protocol. You can add this library JAR file to the
runtime class path and start to communicate with the system by starting its Java
classes from a policy through the Java Policy functions.

v To complement usage of other DSAs. The Java Policy functions can be used to
resolve interoperability issues among different web services platforms, for
example, WebSphere, Weblogic, Axis, and JAX-RPC. The Netcool/Impact Web
Services DSA is often used to start the web services that are running on the
other web services platforms. If the other platform is using certain complex
types in their web services implementation, such as Hashtable or List, the call
from Netcool/Impact fails because the Web Services DSA would not successfully
compile the WSDL file due to these special types. To solve this problem, you can
add the web services client jars that are generated by the other platform to the
runtime class path. This enables policies to make the soap calls by using these
client classes, thus resolving the interoperability issue.

The following Java Policy functions are provided:
v GetFieldValue
v JavaCall
v NewJavaObject
v SetFieldValue

For reference information about these Java Policy functions, see relevant sections in
Chapter 6, “Functions,” on page 73.

User-defined functions
User-defined functions are functions that you use to organize your code in the
body of a policy.

Once you define a function, you can call it in the same way as the built-in action
and parser functions. Variables that are passed to a function are passed by
reference, rather than by value. This means that changing the value of a variable
within a function also changes the value of the variable in the general scope of the
policy.

User-defined functions cannot return a value as a return parameter. You can return
a value by defining an output parameter in the function declaration and then
assigning a value to the variable in the body of the function. Output parameters
are specified in the same way as any other parameter.

You can also declare your own functions and call them within a policy.
User-defined functions help you encapsulate and reuse functionality in your policy.

Chapter 2. Policy fundamentals 27

The syntax for a function declaration is the Function keyword followed by the
name of the function and a comma-separated list of input parameters. The list of
input parameters is followed by a statement block that is enclosed in curly braces.

Unlike action and parser functions, you cannot specify a return value for a
user-defined function. However, because the scope of variables in IPL policy is
global, you can approximate this functionality by setting the value of a return
variable inside the function.

Function declarations must appear in a policy before any instance where the
function is called. The best practice is to declare all functions at the beginning of a
policy.

The following example shows how to declare a user-defined function called
GetNodeByHostname. This function looks up a node in an external data source by
using the supplied host name.
Function GetNodeByHostName(Hostname) {

DataType = "Node";
Filter = "Hostname =’" + Hostname + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);
MyNode = MyNodes[0];

}

You call user-defined functions in the same way that you call other types of
functions. The following example shows how to call the function declared in the
previous example.
GetNodeByHostName("ORA_HOST_01");

Here, the name of the node that you want to look up is ORA_HOST_01. The function
looks up the node in the external data source and returns a corresponding data
item named MyNode. For more information about looking up data and on data
items, see the next chapter in this book.

Important:

When you write an Impact function, check that you do not call the function within
the function body as this might cause a recursive loop and cause a stack overflow
error.

Function declarations

Function declarations are similar to those in scripting languages like JavaScript.
Valid function names can include numbers, characters, and underscores, but cannot
start with a number.

The following is an example of a user-defined function:
Function MyFunc(DataType, Filter, MyArray) {

MyArray = GetByFilter(DataType, Filter, False);
}

28 Netcool/Impact: Policy Reference Guide

Calling user-defined functions

You can call a user-defined function as follows:
Funcname([param1, param2 ...])

The following example shows a user-defined function call:
MyFunc("User", "Location = ’New York’", Users);

Examples of user-defined functions

The following example show how variables are passed to a function by reference:
// Example of vars by reference

Function IncrementByA(NumberA, NumberB) {
NumberB = NumberB + NumberA;

}

SomeInteger = 10;
SomeFloat = 100.001;

IncrementByA(SomeInteger, SomeFloat);

Log("SomeInteger is now: " + SomeInteger);
// will return: IntegerA is now 10

Log("SomeFloat is now: " + SomeFloat);
// will return: FloatB is now 110.001

The following example shows how policies handle return values in user-defined
functions:
// Example of no return output

Function LogTime(TimeToLog) {
If (TimeToLog == NULL) {

TimeToLog = getdate();
}
Log("At the tone the time will be: "+ localtime(TimeToLog));

}

LoggedTime = LogTime(getdate());

Log("LoggedTime = "+LoggedTime);

// will return: "LoggedTime = NULL" as nothing can be
// returned from user functions

Local transactions
You use local transactions in a policy if you want to use more than one SQL
operation to be treated as a single unit of work.

This can be useful for cases where there is a group of related SQL commands that
have to be committed to the database only when all of them are executed
successfully. The following functions in the policy language enable the use of local
transactions in an Impact policy:
v BeginTransaction
v CommitTransaction
v RollbackTransaction

Chapter 2. Policy fundamentals 29

For reference information about these functions, see “Local transactions template”
on page 39 and relevant sections in Chapter 6, “Functions,” on page 73.

Function libraries
Function libraries is a feature you can use to create a set of stored functions that
can be called from any policy.

Use external function libraries to encapsulate and reuse the custom code in your
policies and are available for IPL and JavaScript policy languages.

Creating function libraries
A function library is a special type of policy that contains only user-defined
functions.

You create this policy and define the functions that it contains in the same way
you create standard policies. You can use parameters in the functions as both input
and output variables.
v For an example of how to create function libraries that use JavaScript, refer to

the example in the Load function, see “Load” on page 124.
v The following IPL example shows a function library. This library is a policy

named UTILS_LIBRARY.
// NormalizeString trims whitespace, replaces the space character
// with an underscore and converts all characters to upper case

Function NormalizeString(StringToNormalize) {
StringToNormalize = Trim(StringToNormalize);
StringToNormalize = Replace(StringToNormalize, " ", "_");
StringToNormalize = ToUpper(StringToNormalize);

}

// GetCustomersByNode returns an array of data items from
// a data source, where each data item represents a customer

Function GetCustomersByLocation(Location, Customers) {
Type = "Customer";
Filter = "Location = ’" + Location + "’";
CountOnly = false;
Customers = GetByFilter(Type, Filter, CountOnly);

}

Calling functions in a library
To call a function in function library, you specify the library and function name.
v For an example of how to call functions in a library that uses JavaScript, refer to

the example in the Load function, see “Load” on page 124.
v For IPL, use the following example which uses the following format:

function_library.function_name(param, [param ...])

Where function_library is the name of the library policy, function_name is the
name of the function, and param is the value of one or more parameters required
by the function. You do not need to explicitly reference or include the library name
before you call its functions, as is required in programming languages like C and
C++. The following example shows how to call functions in the library named
UTILS_LIBRARY. The functions are the same as those defined in the previous
example.

30 Netcool/Impact: Policy Reference Guide

// Normalize location string

UTILS_LIBRARY.NormalizeString(Location);

// Get customers at the specified location

UTILS_LIBRARY.GetCustomersByLocation(Location, Customers);

// Print customer info to the policy log

Log(Customers);

Synchronized statement blocks
You can use synchronized statement blocks to write thread-safe policies for use
with a multi-threaded event processor.

You can use synchronized statement blocks in situations where more than one
instance of a policy or different policies that access the same resource run
simultaneously on different event processor threads.

Synchronized statement blocks consist of any set of IPL statements that are
enclosed in curly braces and set apart with the synchronized keyword and a
synchronization identifier.

The syntax for a synchronized statement block is as follows:
synchronized(identifier) { statements }

Where identifier is a unique name for the statement block and statements are
any IPL programming statements.

The following example shows how to create a synchronized statement block for
IPL:
synchronized(update_table) {

DataType = "Customer";
Filter = "Location = ’New York’";
UpdateExpression = "Location = ’Raleigh’, Facility = ’SE_0014’";

BatchUpdate(DataType, Filter, UpdateExpression);

}

To create a synchronized statement block for JavaScript you create a function, and
then call the function with a Synchronizer.
function update_table() {
DataType = "Customer";
Filter = "Location = ’New York’";
UpdateExpression = "Location = ’Raleigh’, Facility = ’SE_0014’";
BatchUpdate(DataType, Filter, UpdateExpression);
}

syncmyFunc = new Packages.org.mozilla.javascript.Synchronizer(update_table);
syncmyFunc();

When Netcool/Impact processes a synchronized statement block, it registers the
synchronization identifier and does not allow other synchronized statement blocks
with that identifier to run until the registered block is finished running. Other
statement blocks with the same identifier to run sequentially, rather than

Chapter 2. Policy fundamentals 31

simultaneously, with the first block. As a result, resources accessed in the
synchronized portion of the policy are protected from simultaneous access by
multiple threads.

Exceptions
You can raise and handle policy-level exceptions.

The Impact Policy Language and JavaScript can raise and catch exceptions within a
policy and handle Java exceptions that are raised internally when a policy is run.

Raising exceptions
To raise an exception, you use the Raise keyword.

The following example shows the syntax for Raise:

Raise ExceptionName(ExceptionText);

where ExceptionName is a unique name for the exception and ExceptionText is the
text output of the exception. This output is printed to the server log when the error
is encountered. You can also access it inside an error handler using the
ErrorMessage variable.

The following example shows how to raise an exception using the Raise keyword.
In this example, the function raises an exception named IntOutOfRangeException if
the value of the Param1 parameter is less than 0.
Function MyFunction(Param1, Param2) {

If (Param1 < 0) {
Raise IntOutOfRangeException("Value of Param1 must be greater than 0");

}

Handling exceptions
To handle an exception, you declare an exception handler.

The handler is a function that is called each time that a specific exception is raised.
An exception is raised at the policy level, or a specific Java™ exception is raised by
Netcool/Impact during the execution of a policy.

Declare exception handlers in advance of any position where they are triggered in
a policy. Insert error handlers at the beginning of a policy before you specify any
other operations.

The following example shows the syntax for exception handlers:
Handle ExceptionName {

statements ...
}

Where ExceptionName is the name of the exception that is raised. The
ExceptionName uses the Raise keyword, or the name of the Java exception class
that is raised by Netcool/Impact during the execution of the policy.

The following example shows how to handle policy-level exceptions by using an
exception handler.
Handle IntOutOfRangeException {

Log("Error: Value of parameter submitted to MyFunction is less than 0");
}

32 Netcool/Impact: Policy Reference Guide

Function MyFunction(Param1, Param2) {
If (Param1 < 0) {

Raise IntOutOfRangeException("Value of Param1 must be greater than 0");
}

}

The following example shows how to handle Java exceptions by using exception
handlers.
Handle java.lang.NullPointerException {

Log("Null pointer exception in policy.");
}

Handle java.lang.Exception {
log("ErrorMessage: " + ErrorMessage);

MyException = javaCall("java.lang.Exception",ExceptionMessage, "getCause", null);
log("MyException is " + MyException);
MyException = javaCall("java.lang.Exception",MyException, "getCause", null);
log("MyException again is " + MyException);
}

The following examples show how to handle JavaScript exceptions by using
exception handlers.
try

{
//Run some code here
}

catch(err)
{
//Handle errors here
}

Example 1:

try {
MyFunction(Param1, Param2);

} catch(e)
if (e == "IntOutOfRangeException") {
Log("Error: Value of parameter submitted to MyFunction is less than 0");
}

}

function MyFunction(Param1, Param2) {
If (Param1 < 0) {

throw "IntOutOfRangeException";
}

}

Example 2:

try {
...code that is running...
} catch(e) {

if (e.javaException instanceof java.lang.NullPointerException) {
Log("Null pointer exception in policy.");
}
if (e.javaException instanceof java.lang.Exception) {

log("ErrorMessage: " + ErrorMessage);
MyException = javaCall("java.lang.Exception",ExceptionMessage, "getCause", null);
log("MyException is " + MyException);
MyException = javaCall("java.lang.Exception",MyException, "getCause", null);
log("MyException again is " + MyException);

}
}

Chapter 2. Policy fundamentals 33

Runtime parameters
You can define parameters that you pass to a policy when you run it either using
the GUI or the nci_trigger script.

You can use these parameters when testing a policy in the GUI or when you want
to automate a policy by external means from the command line (for example,
using the UNIX cron tool).

Setting policy runtime parameters in the editor
Use this procedure to set the runtime parameters for your policy in the policy
editor.

Procedure
1. In the policy editor toolbar, click the Configure Runtime Parameters icon to

open the policy runtime parameter editor.
2. Click New Runtime Parameter to open the Create a New Policy Runtime

Parameter window.
Enter the information in the new runtime parameter configuration window.
Required fields are marked with an asterisk (*).

3. To edit an existing runtime parameter, select the check box next to the
parameter and select edit in in the corresponding cell of the Edit column.

4. Click OK to save the changes to the parameters and close the window.

Policy runtime parameter configuration window
Policy runtime parameters take a set of attributes.

Table 8. List of attributes that are used with a policy runtime parameters

Attribute Description

Name Type a name to describe the parameter.

Label Type a label that will appear in the Policy Trigger
window.

Format Choose a format.

Default Value Type a default value that will always display in the
Policy Trigger window, to avoid entering it each time.

Description Type some text to describe the parameter.

Running policies with parameters in the editor
If you specified any runtime parameters for the policy you can run the policy with
these parameters in the policy editor.

Procedure
1. Click the Run with Parameters icon to open the Policy Runtime Parameters

window.

Note: The fields you see in the Policy Runtime Parameters window depend on
the runtime parameters and values you specified for the policy. If you have not
set a default value for a parameter you must provide it now, otherwise a NULL
value will be passed.

34 Netcool/Impact: Policy Reference Guide

For more information about setting runtime parameters, see “Setting policy
runtime parameters in the editor” on page 34.

2. Click Execute to run the policy with parameters.

Running a policy using the nci_trigger script
Use this procedure to run a policy using the nci_trigger script.

Procedure

To run the policy, you start nci_trigger from the command line, as in the following
example.
In this example, the name of the policy is POLICY_01. The value of Value1 is
Testing1, and the value of Value2 is Testing2.
nci_trigger NCI tipadmin/netcool POLICY_01 Value1 Testing1 Value2 Testing2

In the following example, Value1 and Value2 are the runtime parameters that the
policy handles.
// Value1 and Value2 are passed to the policy
Value3 = EventContainer.Value1 + " " + EventContainer.Value2;
Log(Value3);

Chained policies
Policy chaining is a feature where you chain multiple policies to run together
sequentially when an event reader service triggers them.

Policies are run in series, rather than simultaneously, and each policy in the chain
inherits the policy context from the previously run policy. This means that
variables whose values were assigned in a previous policy in the chain maintain
their values in subsequent policies.

When the event reader retrieves an event from the Netcool/OMNIbus
ObjectServer, it compares the event data to each defined event mapping in the
service configuration. If the event matches multiple chained mappings, it runs each
of the mapped policies in sequence as they appear in the event mapping window.

Chaining policies
Follow this procedure to chain your policies.

Procedure
1. Expand Event Automation > System Configuration, click the Services link to

open the Services tab.
2. Double click the name of the event reader service that you want to use to run

the chained policies.
3. Select the Event Mapping tab in the window that opens.
4. For each policy in the chain, create an event mapping that associates a

restriction filter with a policy name.
When you create the event mapping, select the Chain option in the event
mapping window.

5. Click OK.

Chapter 2. Policy fundamentals 35

Encrypted policies
An encrypted policy is a policy whose text content has been encrypted to a
non-human readable format.

Encrypted policies can be run in the same way as non-encrypted policies.

You encrypt policies using the nci_encryptpolicy script. This script is located in
the $IMPACT_HOME/bin directory and has the following syntax:
nci_encryptpolicy server_name

password
input_policy
output_policy

where server_name is the name of the Impact Server, password is the encryption
password, input_policy is the name of the policy you want to encrypt, and
output_policy is the name of the resulting encrypted policy.

Before you can run the encrypted policy on the originating Impact Server or on
another server, you first import it into the system using the GUI.

To import the policy, complete the following steps:
1. Open the Policies task pane in the Navigation panel.
2. Click the Upload Local IPL File button.
3. Click the Browse button in the window that opens and choose the encrypted

policy file.
4. Click OK.

Once you have imported the policy, you can run it in the same way that you run
any other policy.

Line continuation character
The line continuation character in IPL and JavaScript is the backslash (\).

You use this character to indicate that the code on a subsequent line is a
continuation of the current statement. The line continuation character helps you
format your policies so that they are easier to read and maintain.

Note: You cannot use the line continuation character inside a string literal as
specified with enclosing quotation marks. This usage is not allowed and an error is
reported during processing.

The following example shows the use of the line continuation character:
Log("You can use the line continuation character" + \

"to format very long statements in a policy.");

Code commenting
IPL and JavaScript support both C-style comment blocks and C++-style single-line
code commenting.

Comment blocks are single or multi-line blocks of comments enclosed by the
forward slash (/) and asterisk (*) characters. The following example shows
comment blocks.

36 Netcool/Impact: Policy Reference Guide

/* This is a single-line comment block */
/* This is a multi-line comment block */

Single-line comments are prefixed by two forward slash characters.

The following example shows single-line comments
// These
// are
// single-line
// comments

Chapter 2. Policy fundamentals 37

38 Netcool/Impact: Policy Reference Guide

Chapter 3. Local transactions

You use local transactions in a policy if you want to use more than one SQL
operation to be treated as a single unit of work.

The following code is a typical template of a policy that uses local transactions. In
this policy, SQL_Operation_1() will be executed first. As soon as the operation is
completed successfully, the changes will be committed to the database. When the
BeginTransaction() method is executed, all SQL operations following it will be
executed using the same transaction. As a result any changes that they have made
will not be committed to the database until the operations are executed
successfully and CommitTransaction() is executed.
Handle com.micromuse.response.action.TransactionException {
Log(“ Transaction Failed “ + ErrorMessage);
RollbackTransaction();
}

SQL_Operation_1();
.....
BeginTransaction();
...
SQL_Operation_2();
SQL_Operation_3();
...
CommitTransaction();
...
SQL_Operation_4();

Local transactions template
Here is a typical template of a policy that uses local transactions.

In this policy, SQL_Operation_1() will be executed first. As soon as the operation is
completed successfully, the changes will be committed to the database. When the
BeginTransaction() method is executed, all SQL operations following it will be
executed using the same transaction. As a result any changes that they have made
will not be committed to the database until the operations are executed
successfully and CommitTransaction() is executed.
Handle com.micromuse.response.action.TransactionException {
Log(“ Transaction Failed “ + ErrorMessage);
RollbackTransaction();
}

SQL_Operation_1();
.....
BeginTransaction();
...
SQL_Operation_2();
SQL_Operation_3();
...
CommitTransaction();
...
SQL_Operation_4();

The following examples examine various scenarios that may result after running
the policy in the template.

© Copyright IBM Corp. 2006, 2014 39

SQL_Operation_2() and SQL_Operation_3() is executed
successfully

In this scenario when the thread reaches the CommitTransaction() function, it will
commit both SQL operations to the database and then enable the Auto Commit
functionality so that as soon as SQL_Operation_4() is gets executed, the changes
get committed to the database.

SQL_Operation_2() fails and SQL_Operation_3() is executed
successfully

When SQL_Operation_2 () fails, an exception will be thrown that gets caught by
the Handle block. In the Handle block, the RollbackTransaction() function is
called which rolls back any changes done by SQL_Operation_2(). When the Handle
block is finished, the execution goes back to the policy right after
SQL_Operation_2(), which is SQL_Operation_3(). This SQL Operation will get
executed but since it is being executed after a rollback has occurred, the changes
will not get committed to the database. When the thread reaches the
CommitTransaction() function, it would not commit anything to the database since
a rollback had occurred. The only operation done by CommitTransaction() would
be to enable auto-commit for any SQL operation following it. When the thread
executes SQL_Operation_4(), any changes done will be committed to the database
as soon the operation is completed as Netcool/Impact will be non-transactional
after CommitTransaction().

SQL_Operation_2() is executed successfully and
SQL_Operation_3() fails

Let us assume that after BeginTransaction(), the SQL_Operation_2() gets executed
successfully. The changes will not get committed to the database until all the
operations between BeginTransaction() and CommitTransaction() get executed
successfully. In this scenario, we have assumed that SQL_Operation_3() fails. As a
result an exception will be thrown that will send the policy execution inside the
Handle block where the RollbackTransaction() method gets called. This function
will roll back any changes done since BeginTransaction() and, once the Handle
block is completed, the execution is returned to the policy statement following
SQL_Operation_3(). When the policy executes the CommitTransaction() method, it
will not commit anything to the database because rollback has occurred. The only
operation done by CommitTransaction() would be to enable auto-commit for any
SQL operations following it. When the thread executes SQL_Operation_4(), any
changes done will be committed to the database as soon the operation is
completed as Netcool/Impact will be non-transactional after CommitTransaction();

Both SQL_Operation_2() and SQL_Operation_3() fails

When SQL_Operation_2() fails, the policy execution will enter the Handle block
where RollbackTransaction() is executed, it will roll back any changes made since
BeginTransaction() and transfer the policy execution to the statement following
SQL_Operation_2(). When SQL_Operation_3() gets executed and fails, the
RollbackTransaction() will be executed again in the Handle block and the same
process repeats. When the policy execution reaches the CommitTransaction()
function, it will not commit any changes and will enable auto-commit for any SQL
operations following it.

40 Netcool/Impact: Policy Reference Guide

Local transactions best practices
Here are some practical tips on the usage of local transactions.
v Local transactions should ideally combine SQL operations to a single database.

Even though nothing is stopping you from using different data sources between
BeginTransaction() and CommitTransaction(), you are recommended not to do
that.

v Avoid doing operations inside the transaction block that are not related to the
actual SQL operations.

v Do not rely solely on com.micromuse.response.action.TransactionException to be
thrown for every possible failure in the transaction block. One way to get
around this would be to also handle the general java.lang.Exception and call
RollbackTransaction() in it. For example:
Handle com.micromuse.response.action.TransactionException {
Log(“ Transaction Failed “ + ErrorMessage);
RollbackTransaction();
}

Handle java.lang.Exception {
Log(“Policy Execution Failed“ + ErrorMessage);
// If there is no transaction, this won’t do anything
RollbackTransaction();
}

Chapter 3. Local transactions 41

42 Netcool/Impact: Policy Reference Guide

Chapter 4. Stored procedures

You can call database stored procedures from within a policy using the
CallStoredProcedure function.

You can use this function with Sybase, Microsoft SQL Server, DB2SQL, and Oracle
databases.

Oracle stored procedures
The CallStoredProcedure function works with Oracle data sources.

The CallStoredProcedure function works in two ways:
v With automatic schema discovery
v Without automatic schema discovery

Automatic schema discovery is a feature of CallStoredProcedure with which
Netcool/Impact automatically discovers the schema of the procedure before
sending the procedure request to the database. This is the default behavior of the
application.

Automatic schema discovery makes it easier to write stored procedure policies.
This is because you do not have to explicitly declare the procedure schema in the
policy body before you call the CallStoredProcedure function. However, because
two database requests are made every time it calls the function is called, running
the policy with automatic schema discovery creates an additional performance load
on the database. This can also slow the performance, because the policy engine
waits for the Oracle database to respond to both requests in sequence before
continuing on to process the rest of the policy.

To avoid the extra processing load on the database and to minimize effects on
performance, you can disable automatic schema discovery and explicitly specify
the stored procedure schema in the body of the policy.

If you use multiple procedures that have the same name but are stored in different
packages, you must disable automatic schema discovery. If automatic schema
discovery is not disabled, the Netcool/Impact cannot resolve the procedure
correctly and it displays an error. After you disable the automatic schema
discovery, define the procedure name argument as <packagename>.<procedurename>
in the policy where you invoke the CallStoredProcedure function.

To disable schema discovery globally for all policies, set the following property in
the server properties file:impact.storedprocedure.discoverprocedureschema=false

The server properties file is named servername_server.props, where servername is
the name of the Impact Server. The default value for this property is true. You can
also disable schema discovery on a per-policy basis.

Writing policies with automatic schema discovery
You can call certain types of stored procedures from within a policy.
v Procedures that return scalar values.

© Copyright IBM Corp. 2006, 2014 43

v Procedures that return arrays. Oracle allows stored procedures to return an array
of values as an output parameter. Typically, this array represents a row and each
element in the array represents a row field.

v Procedures that return cursors. Oracle allows stored procedures to return a
cursor as an output parameter. This cursor is an array of arrays that typically
represents a set of rows in a database.

Calling procedures that return scalar values
Use this procedure to call an Oracle stored procedure that returns scalar values as
output parameters.

Procedure
v Create a new context called Sp_Parameter that is used to store input and output

variables for the procedure.
v Populate the Sp_Parameter member variables with the input parameter values

for the stored procedure.
This example shows how to populate the Sp_Parameter member variables with
values for the Hostname and Location input parameters in the stored procedure.
Sp_Parameter.Hostname = "192.168.1.25";
Sp_Parameter.Location = "New York";

v Call the CallStoredProcedure function and pass the name of the data source, the
name of the stored procedure, and Sp_Parameter.
Make sure that you use the data source name, not the name of a data type. In
addition, the name of the stored procedure is case sensitive and has to appear
exactly as it is defined in the database.
The following example shows how to call the CallStoredProcedure function:
CallStoredProcedure("ORA_01", "GetHostnameByIP", Sp_Parameter);

Creating the Sp_Parameter context:

Before you call any stored procedure you need to create a new context called
Sp_Parameter.

Procedure

To create a new Sp_Parameter context call the NewObject function as follows.
Sp_Parameter = NewObject();

Populating the Sp_Parameter member variables:

Use these guidelines to populate the Sp_Parameter member variables.

Make sure that the name of the member variables is exactly the same as those of
the input parameters in the procedure. Specify a value for each parameter in the
stored procedure, even if you want to accept the default.

The following example shows how to populate the Sp_Parameter member variables
with values for the Hostname and Location input parameters in the stored
procedure.
Sp_Parameter.Hostname = "192.168.1.25";
Sp_Parameter.Location = "New York";

44 Netcool/Impact: Policy Reference Guide

The following example shows how to populate the Sp_Parameter member variables
with values for the CustType and Location input parameters in the stored
procedure.
Sp_Parameter.CustType = "Premium";
Sp_Parameter.Location = "New York";

Use this code snippet to populate the Sp_Parameter member variable with a new
context that will contain an output parameter returned from the stored procedure.
In this example, the output parameter is called Name and contains an Oracle VARRAY.
Sp_Parameter.Name = NewObject();
Sp_Parameter.Name.type = "CUST";

The following example shows how to populate the Sp_Parameter member variables
with values for the IPAddress and Location input parameters.
Sp_Parameter.IPAddress = "192.168.1.25";
Sp_Parameter.Location = "Singapore";

Calling the CallStoredProcedure function:

When you call CallStoredProcedure, the function calls the procedure in the
specified data source and returns the output parameters as member variables in
Sp_Parameter.

You pass it the name of the data source, the name of the stored procedure, and the
Sp_Parameter variable. Names of the member variables correspond to the names of
the output parameters. Make sure that you use the data source name, not the name
of a data type.

The following examples demonstrate how to call the CallStoredProcedure function.

In this example, the name of the data source is Oracle_01 and the name of the
stored procedure is GetCustomerByID.
CallStoredProcedure("Oracle_01", "GetCustomerByID", Sp_Parameter);

In this example, the name of the data source is SYB_03 and the name of the stored
procedure is GetCustomersByLocation. The results of the stored procedure are
assigned to the MyReturn variable.
MyReturn = CallStoredProcedure("SYB_03", "GetCustomersByLocation", Sp_Parameter);

In this example, the name of the data source is DB2DS and the name of the stored
procedure is GetHostnameByIP.
CallStoredProcedure(’DB2DS’, ’GetHostnameByIP’, Sp_Parameter);

Example of an Oracle stored procedure that returns a scalar value:

The following example shows how to call an Oracle stored procedure that returns
a scalar value.

Procedure

In this example, you call a procedure named GetHostnameByIP. This procedure has
one input parameter named IPAddress and one output parameter named Hostname.
The example calls the stored procedure and then prints the Hostname value to the
policy log.

Chapter 4. Stored procedures 45

// Create the Sp_Parameter context

Sp_Parameter = NewObject();

// Populate the Sp_Parameter member variables with
// input parameter values

Sp_Parameter.IPAddress = "192.168.1.25";

// Call CAllStoredProcedure and pass the name of the data
// source, the name of the stored procedure and Sp_Parameter

DataSource = "ORA_01";
StoredProc = "GetHostnameByIP";

CallStoredProcedure(DataSource, StoredProc, Sp_Parameter);

// Print the value of the Hostname output parameter
// to the policy log

Log(Sp_Parameter.Hostname);

The next example shows a shorter version:
Sp_Parameter = NewObject();
Sp_Parameter.IPAddress = "192.168.1.25";
CallStoredProcedure("ORA_01", "GetHostnameByIP", Sp_Parameter);
Log(Sp_Parameter.Hostname);

Calling procedures that return an array
Use this procedure to call an Oracle stored procedure that returns an array as an
output parameter.

Procedure
v Create a new context called Sp_Parameter that is used to store input and output

variables for the procedure.
v Populate the Sp_Parameter member variables with the input parameter values

for the stored procedure.
The following example shows how to populate the Sp_Parameter member
variables with values for the CustType and Location input parameters in the
stored procedure.
Sp_Parameter.CustType = "Premium";
Sp_Parameter.Location = "New York";

The following example shows how to populate the Sp_Parameter member
variable with a new context that will contain an output parameter returned from
the stored procedure. In this example, the output parameter is called Name and
contains an Oracle VARRAY.
Sp_Parameter.Name = NewObject();
Sp_Parameter.Name.type = "CUST";

v Call the CallStoredProcedure function and pass the name of the data source, the
name of the stored procedure, and Sp_Parameter.
Make sure that you use the data source name, not the name of a data type. In
addition, the name of the stored procedure is case sensitive and has to appear
exactly as it is defined in the database.
The following example shows how to call the CallStoredProcedure function:
CallStoredProcedure("ORA_01", "GetCustomersByLocation", Sp_Parameter);

v You can now handle the returned array by accessing a member of the
Sp_Parameter context that uses the same name as the underlying array type in
the data source.

46 Netcool/Impact: Policy Reference Guide

Creating the Sp_Parameter context:

Before you call any stored procedure you need to create a new context called
Sp_Parameter.

Procedure

To create a new Sp_Parameter context call the NewObject function as follows.
Sp_Parameter = NewObject();

Populating the Sp_Parameter member variables:

Use these guidelines to populate the Sp_Parameter member variables.

Make sure that the name of the member variables is exactly the same as those of
the input parameters in the procedure. Specify a value for each parameter in the
stored procedure, even if you want to accept the default.

The following example shows how to populate the Sp_Parameter member variables
with values for the Hostname and Location input parameters in the stored
procedure.
Sp_Parameter.Hostname = "192.168.1.25";
Sp_Parameter.Location = "New York";

The following example shows how to populate the Sp_Parameter member variables
with values for the CustType and Location input parameters in the stored
procedure.
Sp_Parameter.CustType = "Premium";
Sp_Parameter.Location = "New York";

Use this code snippet to populate the Sp_Parameter member variable with a new
context that will contain an output parameter returned from the stored procedure.
In this example, the output parameter is called Name and contains an Oracle VARRAY.
Sp_Parameter.Name = NewObject();
Sp_Parameter.Name.type = "CUST";

The following example shows how to populate the Sp_Parameter member variables
with values for the IPAddress and Location input parameters.
Sp_Parameter.IPAddress = "192.168.1.25";
Sp_Parameter.Location = "Singapore";

Calling the CallStoredProcedure function:

When you call CallStoredProcedure, the function calls the procedure in the
specified data source and returns the output parameters as member variables in
Sp_Parameter.

You pass it the name of the data source, the name of the stored procedure, and the
Sp_Parameter variable. Names of the member variables correspond to the names of
the output parameters. Make sure that you use the data source name, not the name
of a data type.

The following examples demonstrate how to call the CallStoredProcedure function.

In this example, the name of the data source is Oracle_01 and the name of the
stored procedure is GetCustomerByID.

Chapter 4. Stored procedures 47

CallStoredProcedure("Oracle_01", "GetCustomerByID", Sp_Parameter);

In this example, the name of the data source is SYB_03 and the name of the stored
procedure is GetCustomersByLocation. The results of the stored procedure are
assigned to the MyReturn variable.
MyReturn = CallStoredProcedure("SYB_03", "GetCustomersByLocation", Sp_Parameter);

In this example, the name of the data source is DB2DS and the name of the stored
procedure is GetHostnameByIP.
CallStoredProcedure(’DB2DS’, ’GetHostnameByIP’, Sp_Parameter);

Handling the returned array:

When you call the stored procedure, the underlying data source returns an array.

Procedure

Netcool/Impact assigns this array as a member variable in the Sp_Parameter
context. The name of the member variable is the same name as the user-defined
array data type returned from the underlying data source.
The following example shows how to handle the array returned by a stored
procedure. In this example, the name of the array data type in the Oracle database
is CUST.
CallStoredProcedure("ORA_01", "GetCustomersByLocation", Sp_Parameter);

Log("The name of the Customer is " + Sp_Parameter.Name.elements[0]);
Log("The location of the Customer is " + Sp_Parameter.Name.elements[1]);

Example of an Oracle stored procedure that returns an array:

The following complete example shows how to call an Oracle stored procedure
that returns an array as an output parameter.

Procedure

In this example, the name of the data source is ORA_01, and the name of the stored
procedure is GetCustomerByLocation. The stored procedure returns a CUST array
with two fields. The first field stores the customer's name. The second field stores
the customer's location.
// Create the Sp_Parameter context.

Sp_Parameter = NewObject();

// Populate the Sp_Parameter member variables with values
// for the input parameters of the stored procedure

Sp_Parameter.CustType = "Premium";
Sp_Parameter.Location = "New York";

// Create an Sp_Parameter member variable that stores
// returned VARRAY

Sp_Parameter.Name = NewObject();
Sp_Parameter.Name.Type = "CUST";

// Call CallStoredProcedure and pass the name of the data source,
// the name of the stored procedure and the Sp_Parameter context.

DataSource = "ORA_01";

48 Netcool/Impact: Policy Reference Guide

ProcName = "GetCustomerByLocation";

CallStoredProcedure(DataSource, ProcName, Sp_Parameter);

// Print the name and location of the customer to the policy log.

Log("The name of the Customer is " + Sp_Parameter.Name.elements[0]);
Log("The location of the Customer is " + Sp_Parameter.Name.elements[1]);

Calling procedures that return a cursor
Use this procedure to call an Oracle stored procedure that returns a cursor as an
output parameter.

Procedure
v Create a new context called Sp_Parameter that is used to store input and output

variables for the procedure.
v Populate the Sp_Parameter member variables with the input parameter values

for the stored procedure.
The following example shows how to populate the Sp_Parameter member
variables with values for the CustType and Location input parameters in the
stored procedure.
Sp_Parameter.CustType = "Basic";
Sp_Parameter.Location = "Shanghai";

v Create the output parameter context using NewObject
v Call the CallStoredProcedure function and pass the name of the data source, the

name of the stored procedure, and Sp_Parameter.
The following example shows how to call the CallStoredProcedure function:
CallStoredProcedure("ORA_01", "GetCustomersByLocation", Sp_Parameter);

v You can now handle the returned cursor by accessing the output parameter
context that you created.

Creating the Sp_Parameter context:

Before you call any stored procedure you need to create a new context called
Sp_Parameter.

Procedure

To create a new Sp_Parameter context call the NewObject function as follows.
Sp_Parameter = NewObject();

Populating the Sp_Parameter member variables:

Use these guidelines to populate the Sp_Parameter member variables.

Make sure that the name of the member variables is exactly the same as those of
the input parameters in the procedure. Specify a value for each parameter in the
stored procedure, even if you want to accept the default.

The following example shows how to populate the Sp_Parameter member variables
with values for the Hostname and Location input parameters in the stored
procedure.
Sp_Parameter.Hostname = "192.168.1.25";
Sp_Parameter.Location = "New York";

Chapter 4. Stored procedures 49

The following example shows how to populate the Sp_Parameter member variables
with values for the CustType and Location input parameters in the stored
procedure.
Sp_Parameter.CustType = "Premium";
Sp_Parameter.Location = "New York";

Use this code snippet to populate the Sp_Parameter member variable with a new
context that will contain an output parameter returned from the stored procedure.
In this example, the output parameter is called Name and contains an Oracle VARRAY.
Sp_Parameter.Name = NewObject();
Sp_Parameter.Name.type = "CUST";

The following example shows how to populate the Sp_Parameter member variables
with values for the IPAddress and Location input parameters.
Sp_Parameter.IPAddress = "192.168.1.25";
Sp_Parameter.Location = "Singapore";

Calling the CallStoredProcedure function:

When you call CallStoredProcedure, the function calls the procedure in the
specified data source and returns the output parameters as member variables in
Sp_Parameter.

You pass it the name of the data source, the name of the stored procedure, and the
Sp_Parameter variable. Names of the member variables correspond to the names of
the output parameters. Make sure that you use the data source name, not the name
of a data type.

The following examples demonstrate how to call the CallStoredProcedure function.

In this example, the name of the data source is Oracle_01 and the name of the
stored procedure is GetCustomerByID.
CallStoredProcedure("Oracle_01", "GetCustomerByID", Sp_Parameter);

In this example, the name of the data source is SYB_03 and the name of the stored
procedure is GetCustomersByLocation. The results of the stored procedure are
assigned to the MyReturn variable.
MyReturn = CallStoredProcedure("SYB_03", "GetCustomersByLocation", Sp_Parameter);

In this example, the name of the data source is DB2DS and the name of the stored
procedure is GetHostnameByIP.
CallStoredProcedure(’DB2DS’, ’GetHostnameByIP’, Sp_Parameter);

Handling the returned cursor:

When you call the stored procedure, the underlying data source returns the cursor.

Procedure

Netcool/Impact converts the cursor as an array of arrays, where the first set of
arrays represents the rows returned in the cursor, and the second set of arrays
represents the fields in the rows.
The following example shows how to handle the cursor returned from a stored
procedure.

50 Netcool/Impact: Policy Reference Guide

Count = Length(Sp_Parameter.CUSTOMERS.elements);

While (Count > 0) {
Index = Count - 1;
Elements = Sp_Parameter.CUSTOMERS.elements[Index];
Log("Customer name is: " + Elements.Name);
Log("Customer ID is: " + Elements.ID);
Count = Count - 1;

}

Example of an Oracle stored procedure that returns a cursor:

The following complete example shows how to call an Oracle stored procedure
that returns a cursor as an output parameter.

Procedure

In this example, the name of the data source is ORA_02 and the name of the stored
procedure is GetCustomerByLocation. The stored procedure returns a cursor that
consists of multiple rows from the database. Each row has multiple fields, among
which are Name and ID.
// Create the Sp_Parameter context.

Sp_Parameter = NewObject();

// Populate the Sp_Parameter member variables with
// values to pass as input parameters to the stored
// procedure.

Sp_Parameter.CustType = "Basic";
Sp_Parameter.Location = "Shanghai";

// Create the output parameter context

Sp_Parameter.CUSTOMERS = NewObject();

// Call CallStoredProcedure and pass the name of the
// data source, the stored procedure name and the
// Sp_Parameter context.

DataSource = "ORA_02";
ProcName = "GetCustomersByLocation";

CallStoredProcedure(DataSource, ProcName, Sp_Parameter);

// Interate through the arrays in the output parameter
// context and print out the values of the Name and
// ID fields.

Count = Length(Sp_Parameter.CUSTOMERS);

While (Count > 0) {
Index = Count - 1;
Elements = Sp_Parameter.CUSTOMERS.elements[Index];
Log("Customer name is: " + Elements.Name);
Log("Customer ID is: " + Elements.ID);
Count = Count - 1;

}

Writing policies without automatic schema discovery
Follow these steps if you want to write policies without automatic schema
discovery.

Chapter 4. Stored procedures 51

Procedure
v Disable schema discovery globally for all policies.

You do this by setting the
impact.storedprocedure.discoverprocedureschema=false property in the server
properties file:
You can also disable schema discovery on a per-policy basis.

v Create a new context called Sp_Parameter that is used to store input and output
variables for the procedure.

v Create a new context for each parameter that you intend to pass to the
procedure and assign this context to an Sp_Parameter member variable.

v Optional: Create a return parameter context.
If you are calling a stored function that has a return parameter, you specify it as
the first parameter in the Sp_Parameter context.

v Optional: Set the DiscoverProcedureSchema variable.
If you do not want to globally disable schema discovery, you can disable it on a
per policy basis.

v Call the CallStoredProcedure function and pass the name of the data source, the
name of the stored procedure, and Sp_Parameter.
The following example shows how to call the CallStoredProcedure function:
CallStoredProcedure("Oracle_01", "GetCustomerByID", Sp_Parameter);

Disabling schema discovery globally
Use this procedure to disable schema discovery globally for all policies.

About this task

To avoid extra processing load on the database and to minimize performance
issues, you can disable automatic schema discovery.

If you use multiple procedures that have the same name but that are stored in
different packages, you must disable automatic discovery. If you do not disable
automatic schema discovery, Netcool/Impact displays an error.

In both cases, you can specify the stored procedure schema directly in the policy as
an alternative.

Procedure

Set the following property in the server properties file:
impact.storedprocedure.discoverprocedureschema=false

The server properties file is named servername_server.props, where servername is
the name of the Impact Server. The default value for this property is true.

Creating the Sp_Parameter context
Before you call any stored procedure you need to create a new context called
Sp_Parameter.

Procedure

To create a new Sp_Parameter context call the NewObject function as follows.
Sp_Parameter = NewObject();

52 Netcool/Impact: Policy Reference Guide

Creating the parameter contexts
After you have created Sp_Parameter context, you create a new context for each
parameter that you intend to pass to the procedure and assign this context to an
Sp_Parameter member variable.

Procedure

To create a new parameter context, you call the NewObject function and assign it as
a member of Sp_Parameter as follows:
Sp_Parameter["1"] = newObject();

where the name of the member variable is an index value starting with 1. Specify
the index number as a string. Specify the parameters in the order in which they
appear in the stored procedure call.
After you have created a parameter context, you then assign it a set of member
variables that specify the parameter name, type, type name, direction, and value.
Table 9 shows the valid parameter types and type names.

Table 9. Parameter types and type names

Type Typename

3 Decimal, Number, Integer, Numeric, Smallint, Float

12 Varchar, Varchar2, String

93 Date

1111 Clob, Varray, Ref Cursor

You can assign the members variables in the parameter context as follows:
Sp_Parameter["1"].name = "firstName";
Sp_Parameter["1"].type = 12;
Sp_Parameter["1"].typename = "String";
Sp_Parameter["1"].direction = "INOUT";
Sp_Parameter["2"].value = "Muse";

Creating a return parameter context
If you are calling a stored function that has a return parameter, you specify it as
the first parameter in the Sp_Parameter context.

Procedure

You specify the name and direction of this parameter as RETURN and the value as
an empty string. Identify the return parameter with an index value of 1.
You can create the return parameter context and assign its member variables as
follows:
Sp_Parameter["1"] = NewObject();
Sp_Parameter["1"].name = "RETURN";
Sp_Parameter["1"].type = 3;
Sp_Parameter["1"].typename = "Integer";
Sp_Parameter["1"].direction = "RETURN";
Sp_Parameter["1"].value = "";

Setting the DiscoverProcedureSchema variable
Use this procedure to set the DiscoverProcedureSchema variable.

Chapter 4. Stored procedures 53

Procedure

If you do not want to globally disable schema discovery as described previously in
this section, you can disable it on a per policy basis by setting the
DiscoverProcedureSchema variable to false as follows:
DiscoverProcedureSchema = false;

Calling the CallStoredProcedure function
When you call CallStoredProcedure, the function calls the procedure in the
specified data source and returns the output parameters as member variables in
Sp_Parameter.

You pass it the name of the data source, the name of the stored procedure, and the
Sp_Parameter variable. Names of the member variables correspond to the names of
the output parameters. Make sure that you use the data source name, not the name
of a data type.

The following examples demonstrate how to call the CallStoredProcedure function.

In this example, the name of the data source is Oracle_01 and the name of the
stored procedure is GetCustomerByID.
CallStoredProcedure("Oracle_01", "GetCustomerByID", Sp_Parameter);

In this example, the name of the data source is SYB_03 and the name of the stored
procedure is GetCustomersByLocation. The results of the stored procedure are
assigned to the MyReturn variable.
MyReturn = CallStoredProcedure("SYB_03", "GetCustomersByLocation", Sp_Parameter);

In this example, the name of the data source is DB2DS and the name of the stored
procedure is GetHostnameByIP.
CallStoredProcedure(’DB2DS’, ’GetHostnameByIP’, Sp_Parameter);

Example of specifying schemas in a policy
The following example shows how to explicitly specify schemas in a policy when
calling a variety of different stored procedure types.
/** Examples of CallStoredProcedure in new format*/

log("-------------Test standalone procedure combine_and_format_names------");

Sp_Name="combine_and_format_names";

Sp_Parameter = newObject();

Sp_Parameter["1"] = newObject();
Sp_Parameter["1"].name = "firstName";
Sp_Parameter["1"].type = 12;
Sp_Parameter["1"].typename = "String";
Sp_Parameter["1"].direction = "INOUT";
Sp_Parameter["1"].value = "Micro";

Sp_Parameter["2"] = newObject();
Sp_Parameter["2"].name = "lastName";
Sp_Parameter["2"].type = 12;
Sp_Parameter["2"].typename = "String";
Sp_Parameter["2"].direction = "INOUT";
Sp_Parameter["2"].value = "Muse";

Sp_Parameter["3"] = newObject();
Sp_Parameter["3"].name = "fullName";

54 Netcool/Impact: Policy Reference Guide

Sp_Parameter["3"].type = 12;
Sp_Parameter["3"].typename = "String";
Sp_Parameter["3"].direction = "OUT";
Sp_Parameter["3"].value = "";

Sp_Parameter["4"] = newObject();
Sp_Parameter["4"].name = "nameFormat";
Sp_Parameter["4"].type = 12;
Sp_Parameter["4"].typename = "String";
Sp_Parameter["4"].direction = "IN";
Sp_Parameter["4"].value = "FIRST,LAST";

DiscoverProcedureSchema = false;

CallStoredProcedure(’oracleOnOracle1’, Sp_Name, Sp_Parameter);

log("Full name in given name format: " + Sp_Result.FULLNAME);

log("--------------End combine_and_format_names------------------");

log("--------------Test function returning NUMBER-------------------------");

Sp_Name = "returnNumber";

Sp_Parameter = newObject();

// Note: Return parameter has to be always first parameter

Sp_Parameter["1"] = newObject();
Sp_Parameter["1"].name = "RETURN";
Sp_Parameter["1"].type = 3;
Sp_Parameter["1"].typename = "NUMBER";
Sp_Parameter["1"].direction = "RETURN";
Sp_Parameter["1"].value = "";

Sp_Parameter["2"] = newObject();
Sp_Parameter["2"].name = "MAX_SALARY";
Sp_Parameter["2"].type = 3;
Sp_Parameter["2"].typename = "NUMBER";
Sp_Parameter["2"].direction = "IN";
Sp_Parameter["2"].value = 4;

Sp_Parameter["3"] = newObject();
Sp_Parameter["3"].name = "factor";
Sp_Parameter["3"].type = 3;
Sp_Parameter["3"].typename = "NUMBER";
Sp_Parameter["3"].direction = "IN";
Sp_Parameter["3"].value = 2;

DiscoverProcedureSchema = false;

CallStoredProcedure(’oracleOnOracle1’, Sp_Name, Sp_Parameter);

log("power(max_salary , factor): " + Sp_Result.RETURN);

log("--------------End function returnNumber-------------------------------");

log("-------------Test procedure into package returning VARRAY--------------");

function printArray_ActionNode() {
log("Array type : " + Sp_Result.pbooks.type);
log("Array elements : " + Sp_Result.pbooks.elements[0]);
log("Array elements : " + Sp_Result.pbooks.elements[1]);

}

Sp_Name = "procedureAndFunction.select_into_subject1";

Chapter 4. Stored procedures 55

Sp_Parameter = NewObject();

Sp_Parameter["1"] = newObject();
Sp_Parameter["1"].name = "psubject_id";
Sp_Parameter["1"].type = 12;
Sp_Parameter["1"].typename = "String";
Sp_Parameter["1"].direction = "IN";
Sp_Parameter["1"].value = "CS1";

Sp_Parameter["2"] = newObject();
Sp_Parameter["2"].name = "psubject_name";
Sp_Parameter["2"].type = 12;
Sp_Parameter["2"].typename = "String";
Sp_Parameter["2"].direction = "IN";
Sp_Parameter["2"].value = "Computer Science";

Sp_Parameter["3"] = newObject();
Sp_Parameter["3"].name = "pbooks";
Sp_Parameter["3"].type = 1111;
Sp_Parameter["3"].typename = "VARRAY";
Sp_Parameter["3"].direction = "OUT";
Sp_Parameter["3"].value = newObject();
Sp_Parameter["3"].value.type = "BOOKLIST1";

DiscoverProcedureSchema = false;

CallStoredProcedure(’oracleOnOracle1’ , Sp_Name , Sp_Parameter);

printArray_ActionNode();

log("-------------End procedure procedureAndFunction.select_into_subject1---");

log("------Test function into package with no parameters returning ResultSet----");

log("Example -- Cursor as a OUT parameter");

function printCursorNum_ActionNode() {
totalItems = Sp_Result.RETURN.Num;
array = Sp_Result.RETURN.elements;
log("Total Number of elements in cursor: " + totalItems);
getEachCursorElement_ActionNode(totalItems, array);

}

function getEachCursorElement_ActionNode(totalItems, array) {
log("Printing Cursor Values");
item = array[index];
log("emp id: " + item.EMP_ID); // column names have to be UpperCase /
log("emp Name: " + item.EMP_NAME);
index=index+1;
runFunction0 = false;
if (index < totalItems) {

runFunction0=true;
}
if (runFunction0 = true) {

printCursorNum_ActionNode();
}

}

Sp_Name = "procedureAndFunction.returnResultSet";

Sp_Parameter = newObject();

Sp_Parameter["1"] = newObject();
Sp_Parameter["1"].name = "RETURN";
Sp_Parameter["1"].type = 1111;
Sp_Parameter["1"].typename = "REF CURSOR";
Sp_Parameter["1"].direction = "RETURN";

56 Netcool/Impact: Policy Reference Guide

Sp_Parameter["1"].value = "";

index = 0;

DiscoverProcedureSchema = false;

CallStoredProcedure(’oracleOnOracle1’, Sp_Name, Sp_Parameter);

printCursorNum_ActionNode();

log("-----End function procedureAndFunction.returnResultSet-------------------");

log("-----DATE support---");

function printCursorNum_ActionNode() {
totalItems = Sp_Result.RETURN.Num;
array = Sp_Result.RETURN.elements;
log("PP_SP Total Number of elements in cursor : " + totalItems);
getEachCursorElement_ActionNode(array);
}

function getEachCursorElement_ActionNode(array) {
item = array[index];
log("StartTime: " + item.STARTTIME); // column names have to be UpperCase
log("StartTime: " + item.AGGINTERVAL);
log("applicationName : " + item.APPLICATIONNAME);
log("interfaceName : " + item.INTERFACENAME);
index=index+1;
runFunction0 = false;
if (index < totalItems) {

runFunction0=true;
}
if (runFunction0 = true) {

printCursorNum_ActionNode();
}

}

Sp_Name = "procedureAndFunction.supportdate";

Sp_Parameter = newObject();

/// Following three date formats are supported /
//Sp_Parameter.STARTTIME_IN = "12-MAY-2003";
//Sp_Parameter.STARTTIME_IN = "2003-05-12";
//Sp_Parameter.STARTTIME_IN = "2003-05-12 02:03:04.5";

Sp_Parameter["1"] = newObject();
Sp_Parameter["1"].name = "RETURN";
Sp_Parameter["1"].type = 1111;
Sp_Parameter["1"].typename = "REF CURSOR";
Sp_Parameter["1"].direction = "RETURN";
Sp_Parameter["1"].value = "";

Sp_Parameter["2"] = newObject();
Sp_Parameter["2"].name = "STARTTIME_IN";
Sp_Parameter["2"].type = 93;
Sp_Parameter["2"].typename = "DATE";
Sp_Parameter["2"].direction = "IN";
Sp_Parameter["2"].value = "2003-05-12 00:00:00.0";

Sp_Parameter["3"] = newObject();
Sp_Parameter["3"].name = "INTERVAL";
Sp_Parameter["3"].type = 3;
Sp_Parameter["3"].typename = "NUMBER";
Sp_Parameter["3"].direction = "IN";
Sp_Parameter["3"].value = 5;

Chapter 4. Stored procedures 57

index = 0;

DiscoverProcedureSchema = false;

CallStoredProcedure(’oracleOnOracle1’ , Sp_Name, Sp_Parameter);

printCursorNum_ActionNode();

log("-------------End DATE support---------------------");

Sybase and Microsoft SQL Server stored procedures
You can use CallStoredProcedure to call the following types of procedures.
v Procedures that return a single value
v Procedures that return database rows

Automatic schema discovery is always used when Sybase or Microsoft SQL Server
stored procedures are called. Unlike with Oracle stored procedures, you cannot
disable automatic schema discovery.

Calling procedures that return a single value
Use this procedure to call a Sybase stored procedure that returns a single value.

Procedure
v Create a new context called Sp_Parameter that is used to store input and output

variables for the procedure.
v Populate the Sp_Parameter member variables with the input parameter values

for the stored procedure.
The following example shows how to populate the Sp_Parameter member
variables with values for the IPAddress and Location input parameters:
Sp_Parameter.IPAddress = "192.168.1.25";
Sp_Parameter.Location = "Singapore";

v Call the CallStoredProcedure function and pass the name of the data source, the
name of the stored procedure, and Sp_Parameter.
The following example shows how to call CallStoredProcedure. In this example,
the name of the data source is SYB_01 and the name of the stored procedure is
GetCustomersByLocation. The results of the stored procedure are assigned to the
MyReturn variable.
MyReturn = CallStoredProcedure("SYB_01", "GetCustomersByLocation", Sp_Parameter);

v You can now handle the returned value by accessing the first element of the
array returned by CallStoredProcedure.

Creating the Sp_Parameter context
Before you call any stored procedure you need to create a new context called
Sp_Parameter.

Procedure

To create a new Sp_Parameter context call the NewObject function as follows.
Sp_Parameter = NewObject();

Populating the Sp_Parameter member variables
Use these guidelines to populate the Sp_Parameter member variables.

58 Netcool/Impact: Policy Reference Guide

Make sure that the name of the member variables is exactly the same as those of
the input parameters in the procedure. Specify a value for each parameter in the
stored procedure, even if you want to accept the default.

The following example shows how to populate the Sp_Parameter member variables
with values for the Hostname and Location input parameters in the stored
procedure.
Sp_Parameter.Hostname = "192.168.1.25";
Sp_Parameter.Location = "New York";

The following example shows how to populate the Sp_Parameter member variables
with values for the CustType and Location input parameters in the stored
procedure.
Sp_Parameter.CustType = "Premium";
Sp_Parameter.Location = "New York";

Use this code snippet to populate the Sp_Parameter member variable with a new
context that will contain an output parameter returned from the stored procedure.
In this example, the output parameter is called Name and contains an Oracle VARRAY.
Sp_Parameter.Name = NewObject();
Sp_Parameter.Name.type = "CUST";

The following example shows how to populate the Sp_Parameter member variables
with values for the IPAddress and Location input parameters.
Sp_Parameter.IPAddress = "192.168.1.25";
Sp_Parameter.Location = "Singapore";

Calling the CallStoredProcedure function
When you call CallStoredProcedure, the function calls the procedure in the
specified data source and returns the output parameters as member variables in
Sp_Parameter.

You pass it the name of the data source, the name of the stored procedure, and the
Sp_Parameter variable. Names of the member variables correspond to the names of
the output parameters. Make sure that you use the data source name, not the name
of a data type.

The following examples demonstrate how to call the CallStoredProcedure function.

In this example, the name of the data source is Oracle_01 and the name of the
stored procedure is GetCustomerByID.
CallStoredProcedure("Oracle_01", "GetCustomerByID", Sp_Parameter);

In this example, the name of the data source is SYB_03 and the name of the stored
procedure is GetCustomersByLocation. The results of the stored procedure are
assigned to the MyReturn variable.
MyReturn = CallStoredProcedure("SYB_03", "GetCustomersByLocation", Sp_Parameter);

In this example, the name of the data source is DB2DS and the name of the stored
procedure is GetHostnameByIP.
CallStoredProcedure(’DB2DS’, ’GetHostnameByIP’, Sp_Parameter);

Handling the returned value
When you call the stored procedure, the underlying data source returns a value as
the result.

Chapter 4. Stored procedures 59

Procedure

Netcool/Impact assigns this value to the first element of an array and returns it
from the CallStoredProcedure function.
The following example shows how to handle the results of a Sybase stored
procedure that returns a single value.
MyReturn = CallStoredProcedure("SYB_01", "GetNodeByIPAddress", Sp_Parameter);

Log("The value returned by the procedure is: " + MyReturn[0]);

Example of a Sybase stored procedure that returns a single
value
The following complete example shows how to call a Sybase stored procedure that
returns a single value.

In this example, the data source name is SYB_01 and the stored procedure name is
GetNodeByIPAddress. The results of the stored procedure are assigned to the
MyReturn array.
// Create the Sp_Parameter context.

Sp_Parameter = NewObject();

// Populate the Sp_Parameter member variables with values for
// the stored procedure input parameters.

Sp_Parameter.IPAddress = "192.168.1.250";
Sp_Parameter.Location = "Melbourne";

// Call CallStoredProcedure and pass the name of the data source,
// the name of the stored procedure and Sp_Parameter as input
// parameters

DataSource = "SYB_01";
ProcName = "GetHostnameByIPAddress";

MyReturn = CallStoredProcedure(DataSource, ProcName, Sp_Parameter);

Log("The hostname of the system is: " + MyReturn[0]);

Calling procedures that return database rows
Use this procedure to call a Sybase stored procedure that returns a set of database
rows.

Procedure
v Create a new context called Sp_Parameter that is used to store input and output

variables for the procedure.
v Populate the Sp_Parameter member variables with the input parameter values

for the stored procedure.
The following example shows how to populate the Sp_Parameter member
variables with values for the CustType and Location input parameters.
Sp_Parameter.CustType = "Platinum";
Sp_Parameter.Location = "Singapore";

v Call the CallStoredProcedure function and pass the name of the data source, the
name of the stored procedure, and Sp_Parameter.
In this example, the name of the data source is SYB_03 and the name of the
stored procedure is GetCustomersByLocation. The results of the stored procedure
are assigned to the MyReturn variable.

60 Netcool/Impact: Policy Reference Guide

MyReturn = CallStoredProcedure("SYB_03", "GetCustomersByLocation", Sp_Parameter);

v You can now handle the returned rows by accessing the array of contexts
returned by the CallStoredProcedure function.

Creating the Sp_Parameter context
Before you call any stored procedure you need to create a new context called
Sp_Parameter.

Procedure

To create a new Sp_Parameter context call the NewObject function as follows.
Sp_Parameter = NewObject();

Populating the Sp_Parameter member variables
Use these guidelines to populate the Sp_Parameter member variables.

Make sure that the name of the member variables is exactly the same as those of
the input parameters in the procedure. Specify a value for each parameter in the
stored procedure, even if you want to accept the default.

The following example shows how to populate the Sp_Parameter member variables
with values for the Hostname and Location input parameters in the stored
procedure.
Sp_Parameter.Hostname = "192.168.1.25";
Sp_Parameter.Location = "New York";

The following example shows how to populate the Sp_Parameter member variables
with values for the CustType and Location input parameters in the stored
procedure.
Sp_Parameter.CustType = "Premium";
Sp_Parameter.Location = "New York";

Use this code snippet to populate the Sp_Parameter member variable with a new
context that will contain an output parameter returned from the stored procedure.
In this example, the output parameter is called Name and contains an Oracle VARRAY.
Sp_Parameter.Name = NewObject();
Sp_Parameter.Name.type = "CUST";

The following example shows how to populate the Sp_Parameter member variables
with values for the IPAddress and Location input parameters.
Sp_Parameter.IPAddress = "192.168.1.25";
Sp_Parameter.Location = "Singapore";

Calling the CallStoredProcedure function
When you call CallStoredProcedure, the function calls the procedure in the
specified data source and returns the output parameters as member variables in
Sp_Parameter.

You pass it the name of the data source, the name of the stored procedure, and the
Sp_Parameter variable. Names of the member variables correspond to the names of
the output parameters. Make sure that you use the data source name, not the name
of a data type.

The following examples demonstrate how to call the CallStoredProcedure function.

Chapter 4. Stored procedures 61

In this example, the name of the data source is Oracle_01 and the name of the
stored procedure is GetCustomerByID.
CallStoredProcedure("Oracle_01", "GetCustomerByID", Sp_Parameter);

In this example, the name of the data source is SYB_03 and the name of the stored
procedure is GetCustomersByLocation. The results of the stored procedure are
assigned to the MyReturn variable.
MyReturn = CallStoredProcedure("SYB_03", "GetCustomersByLocation", Sp_Parameter);

In this example, the name of the data source is DB2DS and the name of the stored
procedure is GetHostnameByIP.
CallStoredProcedure(’DB2DS’, ’GetHostnameByIP’, Sp_Parameter);

Handling the returned rows
When you call the stored procedure, the underlying data source returns a set of
database rows.

Procedure

Netcool/Impact creates an array of contexts and assigns each row to a context.
Within each context, the member variables correspond to fields in the row.
Netcool/Impact then returns the array from the CallStoredProcedure function.
The following example shows how to handle the set of database rows returned
from a Sybase stored procedure.
MyReturn = CallStoredProcedure("SYB_03", "GetCustomersByLocation", Sp_Parameter);

Count = Length(MyReturn);

While(Count > 0) {
Index = Count - 1;
Log("The customer name is: " + MyReturn[Index].Name);
Log("The customer ID is: " + MyReturn[Index].ID);
Count = Count - 1;

}

Example of a Sybase stored procedure that returns a set of
database rows
The following complete example shows how to call a Sybase stored procedure that
returns a set of database rows.

In this example, the data source is named SYB_03 and the stored procedure is
named GetCustomersByLocation. The results of the stored procedure are stored as
an array of contexts in the MyResults array.
// Create the Sp_Parameter context

Sp_Parameter = NewObject();

// Populate the Sp_Parameter member variables with values for
// the stored procedure input parameters.

Sp_Parameter.CustType = "Platinum";
Sp_Parameter.Location = "Mumbai";

// Call CallStoredProcedure and pass the data source name, the
// stored procedure name and Sp_Parameter as input parameters.

DataSource = "SYB_03";
ProcName = "GetCustomerByLocation";

62 Netcool/Impact: Policy Reference Guide

MyResults = CallStoredProcedure(DataSource, ProcName, Sp_Parameter);

// Print the customer name and IDs to the policy log.

Count = Length(MyResults);

While(Count > 0) {
Index = Count - 1;
Log("The customer name is: " + MyReturn[Index].Name);
Log("The customer ID is: " + MyReturn[Index].ID);
Count = Count - 1;

}

DB2 SQL stored procedures
You can call DB2 SQL stored procedures from within a policy using the
CallStoredProcedure function.

The CallStoredProcedure function sends a request to the database that contains the
procedure name and its parameters. The results of the procedure are returned to
the policy in a format that can be processed by Netcool/Impact. You can use the
CallStoredProcedure function to call the following types of procedures:
v Procedures that accept IN, and INOUT parameters.
v Procedures that return values in INOUT and OUT parameters.
v Procedures that return Result Sets.

Parameters are useful in DB2 SQL procedures when implementing logic that is
conditional on a particular input or set of input scalar values. You can also use the
parameters when you want to return one or more output scalar values and you do
not want to return a result set. DB2 SQL supports stored procedures with
parameters that only accept an input value IN, that only return an output value
OUT, or that accept an input value and return an output value INOUT. IN and OUT
parameters are passed by value, and INOUT parameters are passed by reference.

A result set is the set of rows that a DB2 SQL procedure returns for a SELECT
statement. You can either discover result set definitions by specifying values for the
input values, or you manually define a result set and its columns.

Automatic schema discovery is always used when DB2 SQL stored procedures are
called. Unlike Oracle stored procedures, you cannot disable automatic schema
discovery for DB2 SQL stored procedures.

Calling procedures that return scalar values
Use the following steps to create a DB2 SQL stored procedure.

Procedure
v Create a DB2 SQL data source
v Create a new context called Sp_Parameter that is used to store input and output

variables for the procedure.
When you have an DB2 SQL data source, the next step before you call any DB2
SQL stored procedure is to create a context called Sp_Parameter. The
Sp_Parameter context is used to store input and output variables for the DB2
SQL stored procedure.

v Populate the Sp_Parameter member variables with the input parameter values
for the stored procedure.

Chapter 4. Stored procedures 63

Include the IN and INOUT parameters. There is no need to populate the
Sp_Parameter with an OUT parameter because the value will be in the
Sp_Parameter automatically after the CallStoredProcedure function runs
successfully.
The following example shows how to populate the Sp_Parameter member
variables with values for the Hostname and Location input parameters in the
stored procedure:
Sp_Parameter.Hostname = ’192.168.1.25’;
Sp_Parameter.Location = ’New York’;

v Call the CallStoredProcedure function and pass the name of the data source, the
name of the stored procedure, and Sp_Parameter.
When you call CallStoredProcedure, the function calls the procedure in the DB2
data source. The function then passes values for the input parameters from
Netcool/Impact to the DB2 stored procedure.
Then the function returns the output parameters as member variables in the
Sp_Parameter. The names of the member variables correspond to the names of
the output parameters.
The following example shows how to call CallStoredProcedure. In this example,
the name of the data source is DB2DS and the name of the stored procedure is
GetHostnameByIP:
CallStoredProcedure(’DB2DS’, ’GetHostnameByIP’, Sp_Parameter);

Creating a DB2 SQL data source
You must have a DB2 SQL data source for DB2 SQL stored procedures to work in
Netcool/Impact.

Procedure

Information about how to create a DB2 SQL data source is documented in the User
Interface Guide. Go to the chapter on Data sources, and refer to the section on
Creating SQL data sources. You can use the following link to the information center
website to access the User Interface Guide.
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/
com.ibm.netcoolimpact.doc5.1.1/welcome.html

Creating the Sp_Parameter context
Before you call any stored procedure you need to create a new context called
Sp_Parameter.

Procedure

To create a new Sp_Parameter context call the NewObject function as follows.
Sp_Parameter = NewObject();

Populating the Sp_Parameter member variables
Use these guidelines to populate the Sp_Parameter member variables.

Make sure that the name of the member variables is exactly the same as those of
the input parameters in the procedure. Specify a value for each parameter in the
stored procedure, even if you want to accept the default.

The following example shows how to populate the Sp_Parameter member variables
with values for the Hostname and Location input parameters in the stored
procedure.

64 Netcool/Impact: Policy Reference Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc5.1.1/welcome.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc5.1.1/welcome.html

Sp_Parameter.Hostname = "192.168.1.25";
Sp_Parameter.Location = "New York";

The following example shows how to populate the Sp_Parameter member variables
with values for the CustType and Location input parameters in the stored
procedure.
Sp_Parameter.CustType = "Premium";
Sp_Parameter.Location = "New York";

Use this code snippet to populate the Sp_Parameter member variable with a new
context that will contain an output parameter returned from the stored procedure.
In this example, the output parameter is called Name and contains an Oracle VARRAY.
Sp_Parameter.Name = NewObject();
Sp_Parameter.Name.type = "CUST";

The following example shows how to populate the Sp_Parameter member variables
with values for the IPAddress and Location input parameters.
Sp_Parameter.IPAddress = "192.168.1.25";
Sp_Parameter.Location = "Singapore";

Calling the CallStoredProcedure function
When you call CallStoredProcedure, the function calls the procedure in the
specified data source and returns the output parameters as member variables in
Sp_Parameter.

You pass it the name of the data source, the name of the stored procedure, and the
Sp_Parameter variable. Names of the member variables correspond to the names of
the output parameters. Make sure that you use the data source name, not the name
of a data type.

The following examples demonstrate how to call the CallStoredProcedure function.

In this example, the name of the data source is Oracle_01 and the name of the
stored procedure is GetCustomerByID.
CallStoredProcedure("Oracle_01", "GetCustomerByID", Sp_Parameter);

In this example, the name of the data source is SYB_03 and the name of the stored
procedure is GetCustomersByLocation. The results of the stored procedure are
assigned to the MyReturn variable.
MyReturn = CallStoredProcedure("SYB_03", "GetCustomersByLocation", Sp_Parameter);

In this example, the name of the data source is DB2DS and the name of the stored
procedure is GetHostnameByIP.
CallStoredProcedure(’DB2DS’, ’GetHostnameByIP’, Sp_Parameter);

Examples of DB2 SQL stored procedures using parameters
Examples of DB2 SQL stored procedures using IN, OUT, and, INOUT parameters, and
a stored procedure that returns a result set.

Example of inserting values to a table using IN parameters

The following example of a stored procedure, insert_data_procedure accepts two
IN parameters and inserts the values to a table.
Data_Source = 'DB2DS’;
Sp_Name = 'insert_data_procedure’;
Sp_Parameter = NewObject();

Chapter 4. Stored procedures 65

Sp_Parameter.HostName = ’mycompany.com’;
Sp_Parameter.IPAddress = ’192.168.1.25’;
CallStoredProcedure(Data_Source, Sp_Name, Sp_Parameter);

Example of a stored procedure that uses IN and OUT parameters

The following example of a stored procedure, get_ip_info, accepts an IN
parameter, which is a HostName and returns the IP address using the OUT parameter
IPAddress.
Data_Source = 'DB2DS’;
Sp_Name = 'get_ip_info’;
Sp_Parameter = NewObject();
Sp_Parameter.HostName = ’mycompany.com’;
CallStoredProcedure(Data_Source, Sp_Name, Sp_Parameter);
Log(“IP Address is: “ + Sp_Parameter.IPAddress);

Example of a stored procedure that returns a result set

The following example shows a DB2 SQL stored procedure that returns a result set.
Data_Source = ’DB2DS’;
Sp_Name = ’get_all_ip_data’;
NetworkData = CallStoredProcedure(Data_Source, Sp_Name, Sp_Parameter);
Num_IP = Length(NetworkData);
log("First IP " + NetworkData[0].IPAddress);

In the example, NetworkData is an array with each entry representing a row of
data.
v To get the number of rows in the result set, use the length function for example;

Length(NetworkData);

v To access a specific field value, use the Array[index].<fieldname> syntax for
example;

NetworkData[0].IPAddress;.

In this instance, NetworkData[0] contains the values for the first row
of the result set. NetworkData[0].IPAddress returns the value for
the column IPAddress for that first row.

Examples of DB2 SQL stored procedures that return an array
SQL procedures support parameters and variables of array types. Arrays are a
convenient way of passing transient collections of data between an application and
a stored procedure or between two stored procedures.

The following example shows a DB2 SQL stored procedure that returns an array.
Data_Source = 'DB2DS’;
Sp_Name = 'get_host_names’;
Sp_Parameter = NewObject();

In the following example, HOST_LIST is an OUT parameter containing an array of
host names. When an OUT parameter contains an array, you must specify the value
TYPE as an array TYPE = ARRAY before calling the stored procedure using the
CallStoredProcedure function.
Sp_Parameter.HOST_LIST = NewObject();
Sp_Parameter.HOST_LIST.TYPE = "ARRAY";
CallStoredProcedure(Data_Source, Sp_Name, Sp_Parameter);

66 Netcool/Impact: Policy Reference Guide

In this example myHosts stores the array returned from the OUT parameter:
myHosts = Sp_Parameter.HOST_LIST;

Num_Hosts = Length(myHosts);
i = 0;
while (i < Num_Hosts) {

log(“Host Name is “ + myHosts[i]);
i = i + 1;

}

Chapter 4. Stored procedures 67

68 Netcool/Impact: Policy Reference Guide

Chapter 5. Filters

A filter is a text string that sets out the conditions under which Netcool/Impact
retrieves the data items.

The use of filters with internal, SQL, LDAP, and some Mediator data types is
supported. The format of the filter string varies depending on the category of the
data type.

SQL filters
SQL filters are text strings that you use to specify a subset of the data items in an
internal or SQL database data type.

For SQL database and internal data types, the filter is an SQL WHERE clause that
provides a set of comparisons that must be true in order for a data item to be
returned. These comparisons are typically between field names and their
corresponding values.

Syntax

For SQL database data types, the syntax of the SQL filter is specified by the
underlying data source. The SQL filter is the contents of an SQL WHERE clause
specified in the format provided by the underlying database. When the data items
are retrieved from the data source, this filter is passed directly to the underlying
database for processing.

For internal data types, the SQL filter is processed internally by the policy engine.
For internal data types, the syntax is as follows:
Field

Operator
Value [AND | OR | NOT (Field
Operator
Value) ...]

where Field is the name of a data type field, Operator is a comparative operator,
and Value is the field value.

Attention: Note that for both internal and SQL data types, any string literals in
an SQL filter must be enclosed in single quotation marks. The policy engine
interprets double quotation marks before it processes the SQL filter. Using double
quotation marks inside an SQL filter causes parsing errors.

Operators

The type of comparison is specified by one of the standard comparison operators.
The SQL filter syntax supports the following comparative operators:
v >
v <
v =
v <=
v =>

© Copyright IBM Corp. 2006, 2014 69

v !=
v LIKE

Restriction: You can use the LIKE operator with regular expressions as
supported by the underlying data source.

The SQL filter syntax supports the AND, OR and NOT boolean operators.

Tip: Multiple comparisons can be used together with the AND, OR, and NOT
operators.

Order of operation

You can specify the order in which expressions in the SQL are evaluated using
parentheses.

Examples

Here is an example of an SQL filter:
Location = ’NYC’
Location LIKE ’NYC.*’
Facility = ’Wandsworth’ AND Facility = ’Putney’
Facility = ’Wall St.’ OR Facility = ’Midtown’
NodeID >= 123345
NodeID != 123234

You can use this filter to get all data items where the value of the Location field is
New York:
Location = ’New York’

Using this filter you get all data items where the value of the Location field is New
York or New Jersey:
Location = ’New York’ OR Location = ’New Jersey’

To get all data items where the value of the Location field is Chicago or Los
Angeles and the value of the Level field is 3:
(Location = ’New York’ OR Location = ’New Jersey’) AND Level = 3

LDAP filters
LDAP filters are filter strings that you use to specify a subset of data items in an
LDAP data type.

The underlying LDAP data source processes the LDAP filters. You use LDAP filters
when you do the following tasks:
v Retrieve data items from an LDAP data type using GetByFilter.
v Retrieve a subset of linked LDAP data items using GetByLinks.
v Delete individual data items from an LDAP data type.
v Specify which data items appear when you browse an LDAP data type in the

GUI.

Syntax

An LDAP filter consists of one or more boolean expressions, with logical operators
prefixed to the expression list. The boolean expressions use the following format:

70 Netcool/Impact: Policy Reference Guide

Attribute
Operator
Value

where Attribute is the LDAP attribute name and Value is the field value.

The filter syntax supports the =, ~=, <, <=, >, >=, and ! operators, and provides
limited substring matching using the * operator. In addition, the syntax also
supports calls to matching extensions defined in the LDAP data source. White
space is not used as a separator between attribute, operator, and value, and those
string values are not specified using quotation marks.

For more information on LDAP filter syntax, see Internet RFC 2254.

Operators

As with SQL filters, LDAP filters provide a set of comparisons that must be true in
order for a data item to be returned. These comparisons are typically between field
names and their corresponding values. The comparison operators supported in
LDAP filters are:
v =
v ~=,
v <
v <=
v >
v >=
v !

One difference between LDAP filters and SQL filters is that any Boolean operators
used to specify multiple comparisons must be prefixed to the expression. Another
difference is that string literals are not specified using quotation marks.

Examples

Here is an example of an LDAP filter:
(cn=Mahatma Gandhi)
(!(location=NYC*))
(&(facility=Wandsworth)(facility=Putney))
(|(facility=Wall St.)(facility=Midtown)(facility=Jersey City))
(nodeid>=12345)

You can use this example to get all data items where the common name value is
Mahatma Gandhi:
(cn=Mahatma Gandhi)

Using this example you get all data items where the value of the location attribute
does not begin with the string NYC:
(!(location=NYC*))

To get all data items where the value of the facility attribute is Wandsworth or
Putney:
(|(facility=Wandsworth)(facility=Putney))

Chapter 5. Filters 71

Mediator filters
You use Mediator filters with the GetByFilter function to retrieve data items from
some Mediator data types.

The syntax for Mediator filters varies depending on the underlying DSA. For more
information about the Mediator syntax for a particular DSA, see the DSA
documentation.

72 Netcool/Impact: Policy Reference Guide

Chapter 6. Functions

The Impact Policy Language (IPL) and JavaScript support built-in functions and
user-defined functions.

Unless stated otherwise the same functions can be used for IPL and JavaScript
languages. There are differences in the syntax used in IPL and JavaScript.

You use variables to pass values to functions. The variable is updated after the
function is complete. As a result, you can only use variables to pass values to
functions.

Activate
The Activate function runs another policy.

After the policy finishes running, Netcool/Impact returns to the first policy and
processes any subsequent statements that it contains.

You can run a policy by name or by data item.

To run a policy by name, call Activate and pass the name of the policy to the
function as an input parameter.

To run a policy by data item, you first retrieve the item from the internal data
repository and then call Activate, and pass it to the function as an input
parameter. Policies are stored in the repository in the internal Policy data type.
You can retrieve policy data items by calling the GetByKey, GetByFilter, or
GetByLinks functions. For data items of type Policy, the value of the KEY field is
the same as the policy name. You can use this value in a key expression when you
call GetByKey or use it in an SQL filter string when you call GetByFilter.

When you call the Activate function, the secondary policy inherits the variables
set in the original policy. These include the EventContainer variable and those
variables that store data items retrieved from internal or external data types. These
variables are not passed back to the original policy after the second policy finishes
running.

Syntax

The Activate function has the following syntax:
Activate([DataItem], [PolicyName])

© Copyright IBM Corp. 2006, 2014 73

Parameters

The Activate function has the following parameters.

Table 10. Activate function parameters

Parameter Type Description

DataItem Data item Data item that stores the policy to be
activated. Pass a null value for this
parameter if you are activating the policy
by name.

PolicyName String Name of the policy to trigger. Pass a null
value for this parameter if you are
activating the policy by data item.

Example

The following example shows how to use the Activate function to run a policy by
name.
// Call Activate and pass the name of the policy as an input
// parameter

Activate(null, "POLICY_01");

The following example shows how to use the Activate function to run a policy by
data item.
// Call GetByKey and pass the name of the data type and
// the key expression as input parameters

DataType = "Policy";
Key = "POLICY_01";
MaxNum = 1;

MyPolicy = GetByKey(DataType, Key, MaxNum);

// Call Activate and pass the policy data item as an input
// parameter

Activate(MyPolicy[0], null);

ActivateHibernation
The ActivateHibernation function continues running a policy that was previously
put to sleep using the Hibernate function. You must also run the
RemoveHibernation function to remove the policy from the hibernation queue and
to free up memory resources.

The policy is continued at the statement that follows the Hibernate function call.
After the policy finishes running, Netcool/Impact returns to the original policy and
processes any remaining statements that it contains.

Before you run a hibernating policy, you must first retrieve it from the internal
data repository. Hibernating policies are stored in the repository as data items in
the internal Hibernation data type. You retrieve a hibernation data item by calling
the GetHibernatingPolicies or the GetByFilter function. If you call GetByFilter,
you use an SQL filter to specify the action key value that identifies the hibernating
policy. After you have retrieved the data item, call ActivateHibernation and pass
it to the function as an input parameter.

74 Netcool/Impact: Policy Reference Guide

Syntax

The ActivateHibernation function has the following syntax:
ActivateHibernation(Hibernation)

Parameters

The ActivateHibernation function has the following parameters.

Table 11. ActivateHibernation function parameters

Parameter Type Description

Hibernation Data Item Data item that stores the hibernating policy.

Examples

The following example shows how to continue running a hibernating policy using
the GetHibernatingPolicies and ActivateHibernation functions.
// Call GetHibernatingPolicies and pass the start and end action keys
// as input parameters

StartActionKey = "ActionKeyAAAA";
EndActionKey = "ActionKeyZZZZ";
MaxNum = 1;

MyHiber = GetHibernatingPolicies(StartActionKey, EndActionKey, MaxNum);

// Call ActivateHibernation and pass the Hibernation data item as an
// input parameter

ActivateHibernation(MyHiber[0]);

The following example shows how to continue running a hibernating policy using
the GetByFilter and ActivateHibernation functions.
// Call GetByFilter and pass the name of the Hibernation data type,
// and a filter the specifies an action key that identifies the hibernation

DataType = "Hibernation";
Filter = "ActionKey = ’ActionKey0001’";
CountOnly = false;

MyHiber = GetByFilter(DataType, Filter, CountOnly);

// Call ActivateHibernation and pass the Hibernation data item as an
// input parameter

ActivateHibernation(MyHiber[0]);

AddDataItem
The AddDataItem function adds a data item to a data type.

You can use AddDataItem with internal, SQL database, and some Mediator data
types.

Before you add a new data item, you must first create a new context using the
NewObject function. Then you assign values to its member variables, where each
variable corresponds to a field in the data type. After you have assigned these
values, call AddDataItem and pass the data type name and the context to the

Chapter 6. Functions 75

function as input parameters. When you call AddDataItem, the values of the
variables are used to populate fields in the new item.

Syntax

The AddDataItem function has the following syntax:
[DataItem =] AddDataItem(DataType, ContextToCopy)

Parameters

The AddDataItem function has the following parameters.

Table 12. AddDataItem function parameters

Parameter Type Description

DataType String Name of the data type.

ContextToCopy Context Name of the context whose member variables
contain initial field values for the data item.

Return value

The AddDataItem function can optionally return the new data item.

Example

The following example shows how to add a data item to a data type using the
AddDataItem function. This example uses an internal or SQL database data type
named Node. Data items in this type have three fields, Id, Name, and Location.
// Call NewObject and populate the member variables of the context with initial
// field values for the data item

MyContext = NewObject();
MyContext.Id = "000123";
MyContext.Name = "ORACLE_01";
MyContext.Location = "Raleigh";

// Call AddDataItem and pass the name of the data type and the context as
// input parameters

DataType = "Node";

AddDataItem(DataType, MyContext);

BatchDelete
The BatchDelete function deletes a set of data items from a data type.

You can use BatchDelete with SQL database data types. You cannot use this
function with internal, LDAP, or Mediator data types.

You can specify which items to delete using an SQL filter or by passing the items
to the function in an array.

To delete data items using an SQL filter, call BatchDelete and pass the name of the
data type and the filter string to the function as input parameters. The filter string
specifies which data items to delete. It uses the SQL filter syntax, which is similar

76 Netcool/Impact: Policy Reference Guide

to the syntax of the WHERE clause in an SQL SELECT statement. For more information
about SQL filters, see “SQL filters” on page 69.

To delete data items by passing them in an array, you first retrieve them from the
data type by calling GetByFilter, GetByKey, or GetByLinks. Then call BatchDelete
and pass the name of the data type and the data item array to the function as
input parameters.

Syntax

The BatchDelete function has the following syntax:
BatchDelete(DataType, [DeleteFilter], [DeleteDataItems])

Parameters

The BatchDelete function has the following parameters.

Table 13. BatchDelete function parameters

Parameter Type Description

DataType String Name of the data type.

DeleteFilter String SQL filter string that specifies which data items to
delete. Optional.

DeleteDataItems Array Array of data items to delete. Optional.

Examples

The following example shows how to delete a set of data items using an SQL filter.
In this example, you delete all of the data items in a data type named Customer
where the value of the Location field is Raleigh.
// Call BatchDelete and pass the name of the data type and a filter string as
// input parameters

DataType = "Customer";
Filter = "Location = ’Raleigh’";

BatchDelete(DataType, Filter, null);

The following example shows how to delete a set of data items by passing them to
the BatchDelete function in an array. In this example, you delete all of the data
items in the data type Server where the value of the Facility field is SE_0014.
// Call GetByFilter and pass the name of the data type and a filter string as
// input parameters

DataType="Server";
Filter="Facility = ’SE_0014’";
CountOnly=false;

MyServers = GetByFilter(DataType, Filter, CountOnly);

// Call BatchDelete and pass the array of data items as an input parameter

BatchDelete(DataType, null, MyServers);

Chapter 6. Functions 77

BatchUpdate
The BatchUpdate function updates field values in a set of data items in a data
type.

You can use BatchUpdate with SQL database data types. You cannot use this
function with internal, LDAP, or Mediator data types.

To update the field values, call BatchUpdate and pass the name of the data type, a
filter string, and an update expression to the function as input parameters. The
filter string specifies which data items to update. It uses the SQL filter syntax,
which is similar to the syntax of the WHERE clause in an SQL SELECT statement. The
update expression is a comma-separated list of field assignments similar to the
contents of the SET clause in an SQL UPDATE statement. For more information about
SQL filters, see “SQL filters” on page 69.

Syntax

The BatchUpdate function has the following syntax:
NumberOfUpdates = BatchUpdate(DataType, Filter, UpdateExpression)

Parameters

The BatchUpdate function has the following parameters.

Table 14. BatchUpdate function parameters

Parameter Type Description

DataType String Name of the data type.

Filter String SQL filter string that specifies which data items to
update.

UpdateExpression String Expression that specifies the fields to update and the
corresponding updated values. The expression is a
comma-separated list of field assignment similar to
the SET clause in an SQL UPDATE statement.

Return value

This function returns a Num value, that is the number of rows that were updated.

Example

The following example shows how to update field values in a set of data items. In
this example, you update the Location and Facility fields of items in a data type
named Server.
// Call BatchDelete and pass the name of the data type, a filter string and
// an update expression as input parameters

DataType = "Server";
Filter = "Location = ’New York’";
UpdateExpression = "Location = ’Raleigh’, Facility = ’SE_0014’";

BatchUpdate(DataType, Filter, UpdateExpression);

78 Netcool/Impact: Policy Reference Guide

BeginTransaction
The BeginTransaction is a local transactions function that is used in SQL
operations.

You use this function to start the transaction. This function is used a policy in
conjunction with other local transactions functions.

For more information about the local transactions functions, see Chapter 3, “Local
transactions,” on page 39.

Arguments

The BeginTransaction() function takes no arguments.

Note: The ObjectServer does not support the use of the BeginTransaction function.

CallDBFunction
CallDBFunction calls an SQL database function.

You can use CallDBFunction with SQL database data types. You cannot use this
function with internal, LDAP, or Mediator data types.

To call the function, call CallDBFunction and pass the name of a data type, a filter
string, and the function expression as input parameters. The data type identifies
the underlying SQL database where the function is to be run. The function
expression is the function call that is to be run by the database. CallDBFunction
returns the value that results from the function.

Using CallDBFunction is equivalent to running the following SQL statement
against the database:
SELECT function FROM table WHERE filter

where function is the specified function expression, table is the data type name,
and filter is the filter string.

Syntax

CallDBFunction has the following syntax:
Integer | Float | String | Boolean = CallDBFunction(DataType, Filter, Metric)

Parameters

The CallDBFunction function has the following parameters.

Table 15. CallDBFunction function parameters

Parameter Type Description

DataType String Name of a data type associated with the
underlying SQL database.

Chapter 6. Functions 79

Table 15. CallDBFunction function parameters (continued)

Parameter Type Description

Filter String Filter string that specifies which data items in the
data type to run the function against. Not
required for all types of database functions. To
run the function without consideration for specific
rows of data in the associated database table,
enter a filter string such as 0=0 that always
evaluates to true.

Metric String Database function expression.

Return value

CallDBFunction returns the value that resulted from the database function.

Examples

The following example shows how to call a database function named NOW() and
return the results of the function for use in a policy.
// Call CallDBFunction and pass the name of a data type, a filter
// string and the function expression

DataType = "Server";
Filter = "0 = 0";
Metric = "NOW()";

DBTime = CallDBFunction(DataType, Filter, Metric);

CallStoredProcedure
The CallStoredProcedure function calls a database stored procedure.

You can use this function with Sybase, Microsoft SQL Server, DB2SQL, and Oracle
databases.

For detailed instructions on calling stored procedures from within a policy, see
Chapter 4, “Stored procedures,” on page 43.

Syntax

The CallStoredProcedure function has the following syntax:
[Array =] CallStoredProcedure(DataSource, ProcedureName, Sp_Parameter)

Parameters

The CallStoredProcedure function has the following parameters.

Table 16. CallStoredProcedure function parameters

Parameter Format Description

DataSource String Name of the data source associated with the database.

80 Netcool/Impact: Policy Reference Guide

Table 16. CallStoredProcedure function parameters (continued)

Parameter Format Description

ProcedureName String The ProcedureName parameter can be just the stored procedure
name or it can also be the fully qualified name using the
following naming convention: Catalog.Schema.ProcedureName.

For example,
AdventureWorks.HumanResources.uspUpdateEmployeePersonalInfo.

In instances where you try to call the procedure with just the
procedure name, for example, uspUpdateEmployeePersonalInfo
and you get an exception when you run the function; you can
use the fully qualified name instead. For example,
AdventureWorks.HumanResources.uspUpdateEmployeePersonalInfo.

Sp_Parameter Context Context named Sp_Parameter that contains the input
parameters for the stored procedure as a set of name/value
pairs. You cannot substitute any other name for this
parameter.

Return value

Array of contexts that contain the output for the stored procedure. Returned for
Sybase stored procedures only.

ClassOf
The ClassOf function returns the data type of a variable.

Syntax

The ClassOf function has the following syntax:
String = ClassOf(Var)

Parameters

The ClassOf function has the following parameter.

Table 17. ClassOf function parameters

Parameter Format Description

Var Variable Variable whose format you want to obtain.

Return value

Data type name for the variable.

Note:

v If you pass an integer variable to ClassOf it returns as long in IPL and returns as
double in JavaScript.

v If you pass a context variable to ClassOf, it returns as BindingsVarGetSettable
in IPL and returns as JavaScriptScriptableWrapper in JavaScript.

v If you pass an OrgNode variable to ClassOf, it returns as OrgNode in IPL and
returns as VarGetSettable in JavaScript.

Chapter 6. Functions 81

Example

The following example shows how to return the data type of a variable:
MyString = "This is a string.";
MyType = ClassOf(MyString);
Log(MyType);

This example prints the following message to the policy log:
Parser Log: String

CommandResponse
Use the CommandResponse function to run interactive and non-interactive programs
on both local and remote systems.

The CommandResponse function sends a series of commands to a system using telnet,
ssh, or tn3270 and then returns responses from the system to the policy for
handling. The default communication protocol is telnet.

When you call the function, CommandResponse connects to a remote port on the
system using the connection information that you specify and returns a new
context that identifies the session. To send a command, you set the value of the
context's SendCommand variable to the text of the command. Then you assign one or
more substrings that match the expected response to the context's ExpectList
variable. If the value of the system response matches one or more of the substrings
in the ExpectList array, the value of the context's ResponseReceived variable is set
to the full text of the response. To end the remote session, you set the value of the
context's Disconnect variable to true.

The CommandResponse is similar to the functionality provided by the Expect utility.
For information about concepts related to this tool, see the Expect Web site at
http://expect.nist.gov.

Syntax

The CommandReponse function has the following syntax:
Session = CommandResponse(Host, UserName, Password|UserCredentials,
InitialPrompt|Options, Port, Timeout, Expiration)

Parameters

The CommandResponse function has the following parameters.

Table 18. CommandResponse function parameters

Parameter Format Description

Host String Host name or IP address of the remote system.

UserName String User name for a remote system account.

Password String Password for the remote system account. Not required if
UserCredentials parameter is specified.

InitialPrompt String Substring that matches the last line in the initial response
returned by the remote application. Using all or a subset
of the expected service command line prompt generally
provides the best results. If the prompt contains a trailing
space, include it in the string passed as this parameter.
Not required if Options parameter is specified.

82 Netcool/Impact: Policy Reference Guide

Table 18. CommandResponse function parameters (continued)

Parameter Format Description

Options Context Context that specifies an initial response string and other
settings specific to the remote system connection. See
“Options”for more information.

Port Integer Port used by the remote application. 23 (telnet) is the
default.

Timeout Integer Command timeout in seconds. If the remote system does
not respond to a command in less than the timeout value,
the session disconnects. Default is 60.

Expiration Integer Entire session expiration timeout in seconds. Must be
greater than Timeout. Default is 600.

User credentials

You can specify user credentials and other options for the remote service using the
UserCredentials context.

You can set the following member variables in this context.

Table 19. UserCredentials context member variables

Name Description

Password Password for the remote system account.

PassPhrase An ssh passphrase. Required only if you are using public key
authentication with ssh.

KeyFile Location and name of the private key file located on the system where
Netcool/Impact is running. Required only if you are using public key
authentication with ssh.

Options

You can specify session initiation options for telnet, ssh, and tn3270 connections
using the Options context.

You can set the following member variables in this context.

Table 20. Options context member variables

Name Description

Service Specifies the service running on the remote system.
Possible values are telnet, ssh and tn3270. Default is
telnet.

Chapter 6. Functions 83

Table 20. Options context member variables (continued)

Name Description

AutoInitiate Specifies whether Netcool/Impact should
automatically connect and log in using the supplied
host, port, user name and password. Possible values
are true or false. If set to true, Netcool/Impact
automatically connects and logs into the remote
application. If set to false, the policy must manually
initiate a connection and login by setting the
CommandResponse context variables Connect and Login,
successively, to true.

Note that Netcool/Impact ignores the actual values set
to the Connect and Login variables. This syntax is used
to provide consistency with other features of the policy
language.

CommandTerminator Specifies the syntax used to terminate a command sent
to the to the remote system.

LoginPrompt Specifies the login prompt sent by the service running
on the remote system.

PasswordPrompt Specifies the password prompt sent by the service
running on the remote system.

Defaults

The CommandResponse function uses the following connection defaults.

Table 21. CommandResponse defaults

Parameter Default

Port 23

Timeout 60 (1 minute)

Expiration 600 (10 minutes)

Options.AutoInitiate true

Options.CmdTerminator \n

Options.LoginPrompt ogin

Options.PasswordPrompt ssword

Return value

The CommandResponse function returns a context that identifies the remote session.
This context has the following member variables.

Table 22. Session context member variables

Variable Format Description

SendCommand String Used to send a command to the remote system.

ExpectList String[] Array of substrings that match the possible expected
responses for a command.

MatchedPrompt String Substring from the ExpectList array that matched the
response from the remote system.

ResponseReceived String Response received from the remote system.

84 Netcool/Impact: Policy Reference Guide

Telnet

To connect to a remote system using telnet, you call CommandResponse and pass the
host name or IP address, a user name and password, an initial prompt substring,
and the port number used by the telnet service on the remote host (default is 23).
You can also pass a session timeout and expiration value in seconds.
CommandResponse connects to the remote port on the system and returns a new
context that identifies the session.

The following example shows how to send a command to a remote system using
telnet. In this example, you connect to the telnet application running on port 23 on
localhost and send an ls -l /tmp command.
// Call CommandResponse and pass the required values as
// input paramatersHost = "localhost";
UserName = "demouser1";
Password = "demouser";
Port = 23;
Timeout = 30;
Expiration = 60;
InitialPrompt = "[demouser1@localhost ~]$ ";

Session = CommandResponse(Host, UserName, Password, InitialPrompt, \
Port, Timeout, Expiration);

// Set the value of the SendCommand variable to the text of the command
// that you want to execute on the remote system

Session.SendCommand = "ls -l /tmp";

// Set the value of the ExpectList variable to a substring that matches
// the expected value of the string returned by the remote host

Session.ExpectList = {"[demouser1@localhost ~]$ "};

// Print the response from the remote host to the policy log

Log(Session.ResponseReceived);

// Disconnect from the remote host

Session.Disconnect = true;

SSH

To connect to a remote system using ssh, you call CommandResponse and pass the
host name or IP address, a UserCredentials context, an Options context, and the
port number used by the ssh service on the remote host (default is 22). You can
also pass a session timeout and expiration value in seconds.

For ssh connections, the UserCredentials context specifies a login password for the
remote service and, optionally, an SSH passphrase, and the location of an RSA or
DSA private key file on the system where the Netcool/Impact server is running.
The Options context specifies the service to use (in this case, ssh) and the initial
response options for the connection. Use of public key authentication is optional.

The CommandResponse function only supports the SSH-2 protocol. SSH-1 is not
supported.

If you want to use public key authentication with ssh and the CommandResponse
function, you must first generate a public/private key pair using the ssh-keygen

Chapter 6. Functions 85

utility. The following command session example shows how to generate the key
pair. In this example, the utility creates the key files in the $IMPACT_HOME/ssh
directory.
cd $IMPACT_HOME
mkdir .ssh

chmod 700 .ssh

ssh-keygen -q -f ./ssh/id_rsa -t rsa
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

Do not provide an empty passphrase at the prompt.

After you have generated the public/private key pair, you must copy the public
key to the remote system where you plan to connect using ssh. You can identify
the public key file generated by the ssh-keygen utility by its file name suffix,
which is .pub. In the example above, ssh-keygen creates a public key file named
id_rsa.pub in the $IMPACT_HOME/ssh directory.

To copy the public key to the remote system, first transfer the file to a temporary
directory on the system and then append its contents to the authorized keys file
located in the home directory of the user account on the system that you plan to
use for authentication. This file is named authorized_keys and is located in the
$HOME/.ssh directory.

When you run the ssh-keygen utility, you specify the name and location of the
private key file as a command argument. In the example above, the name and
location are ./ssh/id_rsa. You pass this name and location as part of the Options
context when you call the CommandResponse function.

For more information about ssh and public key authentication, see the OpenSSH
Web site at http://www.openssh.com.

The following example shows how to send a command to a remote system using
ssh. In this example, you use a UserCredentials context to specify the password
for the login user and an Options context to specify the service, which is ssh, the
command prompt terminator, and an initial prompt string.
// Call CommandResponse and set the required values as input parameters

Host = "localhost";
UserName = "demouser1";
Port = 22;
Timeout = 30;
Expiration = 60;

// Create new UserCredentials context to pass to CommandResponse
// and populate the Password member variable

UserCredentials = NewObject();
UserCredentials.Password = "p4ssw0rd";

// Create new Options context to pass to CommandResponse and
// populate the Service, CmdTerminator and InitialPrompt member
// variables

Options = NewObject();
Options.Service = "ssh";
Options.CmdTerminator = "\n";
Options.InitialPrompt = "[demouser1@localhost ~]$ ";

86 Netcool/Impact: Policy Reference Guide

Session = CommandResponse(Host, UserName, UserCredentials, Options, Port,
Timeout, Expiration);

// Send a command to the ssh session

Session.SendCommand = "ls -l /tmp";

// Set the value of the ExpectList variable to a substring that
// matches the expected response

Session.ExpectList = {"[demouser1@localhost ~]$ "};

// Print the response to the policy log

Log(Session.ResponseReceived);

// Close the ssh session

Session.Disconnect = true;

The following example shows how to send a command to a remote system using
ssh and public key authentication. In this example, you use a UserCredentials
context to specify the password for the login user, the authentication passphrase,
and the location of the private key file. You use an Options context to specify the
service, which is ssh and an initial prompt string.
// Call CommandResponse and set the required values as input parameters

Host = "localhost";
UserName = "demouser";

// Create new UserCredentials context to pass to CommandResponse
// and populate the Password, KeyFile and PassPhrase member variables

UserCredentials = NewObject();
UserCredentials.Password = "p4ssw0rd";
UserCredentials.KeyFile = "./.ssh/id_rsa";
UserCredentials.PassPhrase = "p4ssphr4se";

// Create new Options context to pass to CommandResponse and
// populate the Service and InitialPrompt member
// variables

Options = NewObject();
Options.Service = "ssh";
Options.InitialPrompt = "[demouser1@localhost ~]$ ";

Session = CommandResponse(Host, UserName, UserCredentials, \
Options, null, null, null);

// Send a command to the ssh session

Session.SendCommand = "ls -l /tmp";

// Set the value of the ExpectList variable to a substring that
// matches the expected response

Session.ExpectList = {"[demouser1@localhost ~]$ "};

// Print the response to the policy log

Log(Session.ResponseReceived);

Chapter 6. Functions 87

// Close the ssh session

Session.Disconnect = true;

tn3270

To connect to a remote system using tn3270, you call CommandResponse and pass the
host name or IP address, a UserCredentials context, an Options context, and the
port number used by the tn3270 service on the remote host (default is 23). You can
also pass a session timeout and expiration value in seconds.

For tn3270 connections, the UserCredentials context specifies a login password for
the remote service. The Options context specifies the service to use (in this case,
tn3270) and the initial response options for the connection.

IPL and JavaScript provide a set of key strings that you can use to send special
characters to the tn3270 session. You can use these key strings to move the input
cursor and perform other actions when you send information using tn3270. For
example, you can use key strings to pass a tab character at the end of the user
name provided to CommandResponse for account login. If you are using tn3270 to
interact with IBM Tivoli zNetview, this advances the cursor to the end of the user
name string before it is entered.

You can use the following key strings with tn3270 and the CommandResponse
function.

Table 23. CommandResponse key strings

Special character Key string

Enter [enter]

Tab [tab]

F1 [pf1]

F2 [pf2]

F3 [pf3]

F4 [pf4]

F5 [pf5]

F6 [pf6]

F7 [pf7]

F8 [pf8]

F9 [pf9]

The following example shows how to interact with zNetview on a remote system
using tn3270. In this example, you use a UserCredentials context to specify the
password for the login user and an Options context to specify the service, which is
tn3270, the login, password, and initial prompts, and the command prompt
terminator.
// Call CommandResponse and set the required values as input parameters

Host = "localhost";
UserName = "demouserTAB_KEY";
Port = 23;
Timeout = 120;
Expiration = 240;

88 Netcool/Impact: Policy Reference Guide

// Create new UserCredentials context to pass to CommandResponse
// and populate the Password member variable

UserCredentials = NewObject();
UserCredentials.Password = "Your password";

// Create new Options context to pass to CommandResponse and
// populate the Service, AutoInitiate, LoginPrompt, PasswordPrompt
// and CmdTerminator member variables

Options = NewObject();
Options.Service = "tn3270";
Options.AutoInitiate = false;
Options.LoginPrompt = "OPERATOR ID ==>";
Options.PasswordPrompt = "PASSWORD ==>";
Options.InitialPrompt = "Action===>";
Options.CmdTerminator = "ENTER_KEY";

Session = CommandResponse(Host, UserName, UserCredentials, Options, Port,
Timeout, Expiration);

Session.Connect = true;

Session.ExpectList = {"SELECTION ==>" };

Session.SendCommand = "netview";

Session.Login = true;

Session.SendCommand = "nldm list";
Session.ExpectList = {"CMD==>"};

Log(Session.ResponseReceived);

// Close the tn3270 session

Session.Disconnect = true;

CommitTransaction
The CommitTransaction function is a local transactions function that is used in
SQL operations.

You use this function to commit the changes to the database. If the
RollbackTransaction() function is not called, the CommitTransaction() function
commits the changes to the database. If the RollbackTransaction() is called, the
changes are undone and an internal flag is set to Auto Commit any future SQL
operations.

You must always call the CommitTransaction() function to complete a transaction
even if the RollbackTransaction() function is called.

For more information about the local transactions functions, see Chapter 3, “Local
transactions,” on page 39.

Arguments

The CommitTransaction() function takes no arguments.

Note: The ObjectServer does not support the use of the CommitTransaction
function.

Chapter 6. Functions 89

CurrentContext
The CurrentContext function returns the current policy context.

The policy context consists of all of the currently defined variables in the policy,
including EventContainer, DataItems, DataItem, and Num.

Important: This function must be used only in a Log statement and it cannot be
assigned to a variable.

Syntax

The CurrentContext function has the following syntax:
CurrentContext()

Example

This example shows how to return the current policy context.
Log(CurrentContext());

This example prints the member variables of the context and their values to the
policy log.

Decrypt
The Decrypt function decrypts a string that has been previously encrypted using
Encrypt or the nci_crypt tool.

Syntax

The Decrypt function has the following syntax:
String = Decrypt(Expression)

Parameters

The Decrypt function has the following parameter.

Table 24. Decrypt function parameters

Parameter Format Description

Expression String String to decrypt.

Return value

Decrypted string.

Example

This example shows how to decrypt a string.
MyString = "AB953E4925B39218F390AD2E9242E81A";
MyDecrypt = Decrypt(MyString);
Log(MyDecrypt);

This example prints the following message to the policy log:
Parser Log: Password

90 Netcool/Impact: Policy Reference Guide

DeleteDataItem
The DeleteDataItem function deletes a single data item from a data type.

To delete multiple data items, use the BatchDelete function. You can use
DeleteDataItem with internal and SQL database data types.

Before you delete a data item, you must first retrieve it from the data type by
calling GetByFilter, GetByKey, or GetByLinks. Then, call DeleteDataItem and pass it
to the function as an input parameter.

Syntax

The DeleteDataItem function has the following syntax:
DeleteDataItem(DataItem)

Parameters

The DeleteDataItem function has the following parameter.

Table 25. DeleteDataItem function parameters

Parameter Type Description

DataItem Data Item Data item that you want to delete.

Examples

The following example shows how to delete a data item from a data type using the
DeleteDataItem function. In this example, you retrieve the item from the data type
using the GetByFilter function.
// Call GetByFilter and pass the name of the data type and a
// filter string as input parameters

DataType = "Server";
Filter = "Name = ’ORA_01’";
CountOnly = false;

MyServers = GetByFilter(DataType, Filter, CountOnly);
MyServer = MyServers[0];

// Call DeleteDataItem and pass the data type as an input parameter

DeleteDataItem(MyServer);

Deploy
The Deploy function copies data sources, data types, policies, and services between
server clusters.

You can use this function to write automated deployment policies that copy Impact
Server data between test and production environments.

Syntax

The Deploy function has the following syntax:
Deploy(TargetCluster, Username, Password, Elements, ElementsOfType, CheckpointID)

Chapter 6. Functions 91

Parameters

The Deploy function has the following parameters.

Table 26. Deploy function parameters

Parameter Description

TargetCluster Name of the destination server cluster.

Username Valid Netcool/Impact user name.

Password Valid Netcool/Impact password.

Elements String or array of strings that specify which project components to
copy between server clusters.

ElementsOfType String that specifies which type of project components to copy
between server clusters. You can specify Project, DataSource,
DataType, Policy and Service.

CheckpointID If you are using CVS and SVN version control system for
Netcool/Impact, you can specify a checkpoint label. This label will
be applied to all project components when checked into the version
control system for the target cluster. If you are not using Subversion
or you do not want to use a checkpoint label, use the null value for
this parameter.

In addition to the parameters above, Deploy also optionally reads the following
variables from the policy-level scope.

Table 27. Deploy function optional variables

Variable Description

TargetNameserverHost Host name or IP address of the system where the Name
Server is running. This is typically a system where you are
running the name server and GUI server as hosted
applications in embedded version of WebSphere
Application Server.

TargetNameserverPort HTTP port used by the Name Server. The default is 9080.

TargetNameserverLocation URL path on the Java application server where the name
server is located. The default is /nameserver/services.

NameserverSslEnabled Specifies whether the communication with the name server
is realized over SSL. Value can be true or false. The
default is false.

You use these variables when you want to deploy project data from a
Netcool/Impact cluster that uses one name server to a cluster that uses a different
Name Server.

Examples

The following example shows how to copy a project and all its data sources, data
types, policies, and services to a server cluster named NCI_PROD_01. In this
example, the name of the project is PROJECT_01. Both clusters use the same instance
of the Name Server.
TargetCluster = "NCI_PROD_01";
Username = " tipadmin";
Password = "tippass";
Elements = "PROJECT_01";
ElementsOfType = "Project";

92 Netcool/Impact: Policy Reference Guide

CheckpointID = null;

Deploy(TargetCluster, Username, Password, Elements, ElementsOfType, CheckpointID);

The following example shows how to copy policies named POLICY_01, POLICY_02,
and POLICY_03 to a server cluster named NCI_PROD_02. Both clusters use the same
instance of the Name Server.
TargetCluster = "NCI_PROD_02";
Username = "tipadmin";
Password = "tippass";
Elements = {"POLICY_01", "POLICY_02", "POLICY_03"};
ElementTypes = "Policy";
CheckpointID = null;

Deploy(TargetCluster, Username, Password, Elements, ElementsOfType, CheckpointID);

The following example shows how to copy a project and all its data sources, data
types, policies, and services to a server cluster named NCI_PROD_03. In this
example, the name of the project is PROJECT_01. The target cluster here uses a
different instance of the Name Server.
TargetCluster = "NCI_PROD_01";
Username = "tipadmin";
Password = "tippass";
Elements = "PROJECT_01";
ElementsOfType = "Project";
CheckpointID = null;

// Specify the host and port where the nameserver for the target cluster is located

TargetNameserverHost = "192.168.1.1";
TargetNameserverPort = 9080;

Deploy(TargetCluster, Username, Password, Elements, ElementsOfType, CheckpointID);

DirectSQL
The DirectSQL function runs an SQL operation against the specified database and
returns any resulting rows to the policy as data items.

You can use the DirectSQL function only with SQL database data types.

You use this function to perform SELECT queries with JOIN clauses and to perform
other operations that cannot be carried out using GetByKey, GetByFilter, or
GetByLinks. This function supports SELECT, UPDATE and DELETE statements.

Syntax

The DirectSQL function has the following syntax:
[Array =] DirectSQL(DataSource, Query, CountOnly)

Parameters

The DirectSQL function has the following parameters.

Table 28. DirectSQL function parameters

Parameter Type Description

DataSource String Name of the data source associated with the SQL
database.

Chapter 6. Functions 93

Table 28. DirectSQL function parameters (continued)

Parameter Type Description

Query String SQL operation to run against the database.

CountOnly Boolean Pass a false value for this parameter. Provided
only for backwards compatibility.

Return value

The DirectSQL function returns an array of data items where each data item
represents a row returned from the database by the SQL query. Fields in the data
items have a one-to-one correspondence with fields in the returned rows.

Examples

The following example shows how to run an SQL SELECT operation with a JOIN
clause against a database.
// Call DirectSQL and pass the name of the data source and the
// SQL SELECT statement as input parameters

DataSource = "MYSQL_01";
Query = "SELECT * FROM Customer LEFT JOIN Server ON " + \

"Customer.Location = Server.Location";
CountOnly = false;

MyCustomers = DirectSQL(DataSource, Query, CountOnly);

The following example shows how to run an SQL UPDATE operation against a
database.
// Call DirectSQL and pass the name of the data source and the
// SQL statement as input parameters

DataSource = "MYSQL_02";
Query = "UPDATE Customer SET Affected = true WHERE Location = ’New York’";
CountOnly = false;

DirectSQL(DataSource, Query, CountOnly);

The following example shows how to run an SQL DELETE operation against a
database.
// Call DirectSQL and pass the name of the data source and the
// SQL statement as input parameters

DataSource = "MYSQL_03";
Query = "DELETE FROM Customer WHERE Location = ’New York’";
CountOnly = false;
DirectSQL(DataSource, Query, CountOnly);
num_rows_deleted = Num;
Log("Number of deleted rows: " + num_rows_deleted);

This query deletes the specified records and returns the number of rows deleted.

Caching on SELECT Statement

The DirectSQL function supports caching when used to run a SELECT statement that
returns a result set from a database. Caching is configured separately for each data
source.

94 Netcool/Impact: Policy Reference Guide

To enable caching, you must edit the DirectSQL properties file. This file is named
servername_directsql.props, where servername is the name of the Impact Server. The
file is located in the $IMPACT_HOME/etc directory. Table 29 shows the properties in
this file.

You must replace the string in each property with the data source number as
represented in the data source list. The data source list is a file named
servername_datasourcelist and is located in the $IMPACT_HOME/etc directory.

Table 29. DirectSQL Caching Properties

Property Description

impact.datasource.n.enablecaching Specifies whether caching is enabled for
this data source. Value can be true or false.

impact.datasource.n.cachesize Maximum number of rows per query to
be cached.

impact.datasource.n.querycachesize Maximum number of queries to be cached.

impact.datasource.n.cacheinvalidation Amount of time in seconds before data
items in the cache are considered stale and
must be refreshed from the data source.

impact.datasource.n.querycacheinvalidation Amount of time in seconds before queries
in the cache are considered stale and must
be refreshed from the data source.

Distinct
The Distinct function returns an array of distinct elements from another array.

Syntax

The Distinct function has the following syntax:
Array = Distinct(Array, [UniqueClause])

Parameters

The Distinct function has the following parameters.

Table 30. Distinct function parameters

Parameter Format Description

Array Array Array whose distinct elements you want
to obtain.

UniqueClause String A string expression that specifies which
fields must be different in all data items
to return items in the array as part of
the distinct result set. The format of this
expression is one or more field names
separated by the plus sign (+). Optional.

Return value

An array of distinct elements.

Note: In JavaScript, Integers return as Float instead of integers, for example 1 is
1.0.

Chapter 6. Functions 95

Examples

The following example shows how to return an array of distinct elements from
another array using IPL.
MyArray = Distinct({"a", "a", "b", "b", "c"});
Log(MyArray);

This example prints the following message to the policy log:
Parser Log: {a, b, c}

The following example shows how to return an array of distinct elements from
another array using JavaScript
"MyArray=Distinct(new Array["a", "a", "b", "b", "c"]);"

This example prints the following message to the policy log:
Parser Log: [a, b, c]

The following example shows how to return an array of distinct elements from an
array of data items. In this example, you use the UniqueClause parameter to
specify that all distinct elements returned must have different value in the Node
and Class fields.
MyArray = Distinct(DataItems, "Node+Class");

Encrypt
The Encrypt function encrypts a string.

Syntax

The Encrypt function has the following syntax:
String = Encrypt(Expression)

Parameters

The Encrypt function has the following parameter.

Table 31. Encrypt function parameters

Parameter Format Description

Expression String String to encrypt.

Return value

An encrypted string.

Example

The following example shows how to encrypt a string.
MyString = Encrypt("Password");
Log(MyString);

This example prints the following message to the policy log:
Parser Log: AB953E4925B39218F390AD2E9242E81A

96 Netcool/Impact: Policy Reference Guide

Eval
The Eval function evaluates an expression using the given context.

Syntax

The Eval function has the following syntax:
Integer | Float | String | Boolean = Eval(Expression, Context)

Note: In JavaScript, the Float variable returns extra precision, for example,
10.695671999999998 instead of 10.695672. In IPL, integer division of 10/5 is 2.0. In
JavaScript, integer division of 10/5 is 2.

Parameters

The Eval function has the following parameters.

Table 32. Eval function parameters

Parameter Format Description

Expression String Expression to evaluate.

Context Context Context to use in evaluating the expression.

Return value

Result of the evaluated expression.

Example

The following example shows how to evaluate an expression using the given
context.
MyContext = NewObject();

MyContext.a = 5;
MyContext.b = 10;

MyResult = Eval("a + b", MyContext);

Log(MyResult);

This example prints the following message to the policy log:
Parser Log: 15

EvalArray
The EvalArray function evaluates an expression using the given array.

Syntax

The EvalArray function has the following syntax:
Integer | Float | String | Boolean = EvalArray(Expression, Array)

Chapter 6. Functions 97

Parameters

The EvalArray function has the following parameters.

Table 33. EvalArray function parameters

Parameter Format Description

Expression String Expression to evaluate.

Array array Array to use in evaluating the expression.

Return value

Result of the evaluated expression.

Note: In JavaScript, Integers return as Float instead of integers, for example 1 is
1.0.

Example

The following example shows how to evaluate an expression using the given array.
MyNode1 = NewObject();
MyNode1.Name = "ORA_01";
MyNode1.Location = "New York";

MyNode2 = NewObject();
MyNode2.Name = "ORA_02";
MyNode2.Location = "New York";

MyNodes = {MyNode1, MyNode2};

MyEval = EvalArray(’"Name: " + Name + ", Location: " + Location’, MyNodes);
Log(MyEval);

This example prints the following message to the policy log:
Parser Log: Name: ORA_01, Location: New York, Name: ORA_02, Location: New York

Exit
You use the Exit function to stop a function anywhere in a policy or to exit a
policy.

The Exit function works differently in IPL and JavaScript. In IPL, when you use
Exit in a user-defined function it exits that function, and the policy continues. In
JavaScript, when you use Exit in a user-defined function in a policy it exits the
entire policy. If you want to stop a function in a JavaScript policy you must use the
return command in the policy.

Syntax

The Exit function has the following syntax:

Exit()

98 Netcool/Impact: Policy Reference Guide

Examples

In this example, the value of the X variable is tested. If X is greater than ten, the
policy terminates. If X is less than ten, it prints a message to the policy log. The
following example is valid for IPL and JavaScript.
X = 15;
if (X > 10) {

Log("Exiting if statement");
Exit();

} else {
Log("X is less than 10.");

}
Log("End of policy.");

The following example shows the use of the Exit function in IPL:
Log("Entering Policy TestExit...");
SetGlobalVar("exitFunction","false");
SetGlobalVar("exitPolicy","false");

function testExit(test){
SetGlobalVar("exitPolicy",test);
if (test = true){

Log("Exiting function TestExit....");
Exit();

}else{
Log("Staying in the Policy TestExit....");

}
}

//Passing true will exit the function testExit and exit the policy
on the second call(below)to Exit.
//Passing false will allow the function and policy to finish to the end.
testExit(false);
if(""+(GetGlobalVar("exitPolicy")) = "true"){

log("Exiting policy...");
Exit();

}
Log("If you see this message, the policy continued to the end....");

The following example shows the use of the Exit and return functions in
JavaScript:
Log("Entering Policy TestExit...");
SetGlobalVar("exitFunction","false");
SetGlobalVar("exitPolicy","false");

function testExit(test){
SetGlobalVar("exitPolicy",test);
if (test == true){

Log("Exiting function TestExit AND policy...");
Exit();

}else{
Log("Staying in the Policy TestExit....");
return;
Log("I will not see this log statement as we have already returned");

}
}

//Passing true will immediately exit the function testExit AND the policy.
//Passing false will allow the function and policy to finish to the end.
testExit(true);

Log("If you see this message, the policy continued to the end....");

Chapter 6. Functions 99

Extract
The Extract function extracts a word from a string.

Syntax

The Extract function has the following syntax:
String = Extract(Expression, Index, [Delimiter])

Parameters

The Extract function has the following parameters.

Table 34. Extract function parameters

Parameter Format Description

Expression String String expression from which to extract substrings.

Index Integer Word position of the substring, where 0 indicates the first
word.

Delimiter array Array of characters that separate words in the string. Default
is an array with the space character as the single element.

Return value

The extracted substring.

Example

The following example shows how to extract a word from a string.
MyString = "This is a test.";
MyWord = Extract(MyString, 1, " ");
Log(MyWord);

MyString = "This|is|a|test.";
MyWord = Extract(MyString, 3, "|");
Log(MyWord);

This example prints the following message to the policy log:
Parser Log: is
Parser Log: test

Float
The Float function converts an integer, string, or Boolean expression to a floating
point number.

Syntax

The Float function has the following syntax:
Float = Float(Expression)

100 Netcool/Impact: Policy Reference Guide

Parameters

The Float function has the following parameter.

Table 35. Float function parameters

Parameter Format Description

Expression Integer | String | Boolean Expression to be converted.

Return value

The converted floating point number.

Example

The following example shows how to convert integers, strings, and Boolean
expressions to float point numbers using IPL.
MyFloat = Float(25);
Log(MyFloat);

MyFloat = Float("25.12");
Log(MyFloat);

MyFloat = Float(true);
Log(MyFloat);

This example prints the following message to the policy log:
Parser Log: 25.0
Parser Log: 25.12
Parser Log: 1.0

The following example shows how to convert integers, strings, and Boolean
expressions to float point numbers using JavaScript.
MyFloat = Float(25);
Log(MyFloat);

MyFloat = Float("25.12");
Log(MyFloat);

MyFloat = Float(true);
Log(MyFloat);

JavaScript does not add any decimal points to the results for integers and Boolean
expressions that are used with the Float function.

This example prints the following message to the policy log:
Parser Log: 25
Parser Log: 25.12
Parser Log: 1

FormatDuration
The FormatDuration function converts a duration in seconds into a formatted
date/time string.

Chapter 6. Functions 101

Syntax

The FormatDuration function has the following syntax:
String = FormatDuration(Seconds)

Parameters

The FormatDuration function has the following parameter.

Table 36. FormatDuration function parameters

Parameter Format Description

Seconds Integer Number of seconds.

Return value

Formatted date/time string.

Example

The following example shows how to convert seconds into a formatted date/time
strings.
Seconds = "41927";
Duration = FormatDuration(Seconds);
Log(Duration);

This example prints the following to the policy log:
Parser Log: 11:38:47s

GetByFilter
The GetByFilter function retrieves data items from a data type using a filter as the
query condition.

To retrieve data items using a filter condition, you call GetByFilter and pass the
data type name and the filter string as input parameters. The syntax for the filter
string varies depending on whether the data type is an internal, SQL database,
LDAP, or Mediator data type.

GetByFilter returns an array of references to the retrieved data items. If you do
not assign the returned array to a variable, the function assigns it to the built-in
DataItems variable and sets the value of the Num variable to the number of data
items in the array.

You can use GetByFilter with internal, SQL database, and LDAP data types. You
can also use GetByFilter with some Mediator data types.

Important: When data items are assigned to the built-in DataItem variable, they
are not immediately updated but are stored in a queue to optimize the number of
calls to the database. So, for example, if you update multiple fields in the
DataItems variable there will only be one call to update the underlying database,
when a function call is made. To force all queued updates, call the
CommitChanges() function in your policy. The CommitChanges() function does not
take any arguments.

102 Netcool/Impact: Policy Reference Guide

Syntax

The GetByFilter function has the following syntax:
[Array =] GetByFilter(DataType, Filter, [CountOnly])

Parameters

The GetByFilter function has the following parameters.

Table 37. GetByFilter function parameters

Parameter Format Description

DataType String Name of the data type.

Filter String Filter expression that specifies which data items to retrieve from
the data type.

CountOnly Boolean Pass a false value for this parameter. Provided for
compatibility with earlier versions only.

Return value

Array of references to the retrieved data items. Optional.

Examples

The following example shows how to retrieve data items from an internal or SQL
database data type.
// Call GetByFilter and pass the name of the data type
// and an SQL database filter expression

DataType = "Admin";
Filter = "Level = ’Supervisor’ AND Location LIKE ’NYC.*’";
CountOnly = false;

MyAdmins = GetByFilter(DataType, Filter, CountOnly);

The following example shows how to retrieve data items from an LDAP data type.
// Call GetByFilter and pass the name of the data type
// and an LDAP filter expression

DataType = "Customer";
Filter = "(|(facility=NYC)(facility=NNJ))";
CountOnly = false;

MyCustomers = GetByFilter(DataType, Filter, CountOnly);

The following example shows how to retrieve data items from a Mediator data
type.
// Call GetByFilter and pass the name of the data type
// and the Mediator filter exprssion

DataType = "SWNetworkElement";
Filter = "ne_name = ’DSX1 PNL-01 (ORP)’";
CountOnly = false;

MyElements = GetByFilter(DataType, Filter, CountOnly);

Chapter 6. Functions 103

GetByKey
The GetByKey function retrieves data items from a data type using a key expression
as the query condition.

To retrieve data items by key, you call GetByKey and pass the name of the data
item and a key expression. The key expression varies depending on whether you
want the data items to match a single key or multiple keys.

GetByKey returns an array of references to the retrieved data items. If you do not
specify a return variable, the function assigns the array to the built-in DataItems
variable and sets the value of the Num variable to the number of data items in the
array.

You can use GetByKey with internal, SQL database, and LDAP data types. You can
also use GetByKey with some Mediator data types.

Important: When data items are assigned to the built-in DataItem variable, they
are not immediately updated but are stored in a queue to optimize the number of
calls to the database. So, for example, if you update multiple fields in the
DataItems variable there will only be one call to update the underlying database,
when a function call is made. To force all queued updates, call the
CommitChanges() function in your policy. The CommitChanges() function does not
take any arguments.

Syntax

The GetByKey function has the following syntax:
[Array =] GetByKey(DataType, Key, [MaxNum])

Parameters

The GetByKey function has the following parameters.

Table 38. GetByKey function parameters

Parameter Format Description

DataType String Name of the data type.

Key Integer | Float | Boolean |
String | Array

Key expression that specifies which
data items to retrieve from the data
type.

MaxNum Integer Maximum number of data items to
retrieve. Default is 1. Optional.

Return value

Array of references to the retrieved data items. Optional.

Examples

The following example shows how to retrieve data items from a data type using a
single key.
// Call GetByKey and pass the name of the data type,
// the key expression and the maximum number of data items
// to return.

104 Netcool/Impact: Policy Reference Guide

DataType = "Customer";
Key = "12345";
MaxNum = 1;

MyCustomers = GetByKey(DataType, Key, MaxNum);

The following example shows how to retrieve data items from a data type using
multiple keys.

Example using IPL.
// Call GetByKey and pass the name of the data type,
// the key expression and the maximum number of data
// items to return.

DataType = "Node";
Key = {"R12345", "D98776"};
MaxNum = 1;

MyCustomers = GetByKey(DataType, Key, MaxNum);

Example using JavaScript.
// Call GetByKey and pass the name of the data type,
// the key expression and the maximum number of data
// items to return.

DataType = "Node";
Key = ["R12345", "D98776"];
MaxNum = 1;

MyCustomers = GetByKey(DataType, Key, MaxNum);

GetByLinks
The GetByLinks function retrieves data items in target data types that are linked to
one or more source data items.

To retrieve data items by link, you must first retrieve source data items using
GetByFilter, GetByKey, or another call to GetByLinks. Then you call GetByLinks
and pass an array of target data types and the sources. The function returns an
array of data items in the target data types that are linked to the source data items.

GetByLinks returns an array of references to the retrieved data items. If you do not
specify a return variable, the function assigns the array to the built-in DataItems
variable and sets the value of the Num variable to the number of data items in the
array.

Important: When data items are assigned to the built-in DataItem variable, they
are not immediately updated but are stored in a queue to optimize the number of
calls to the database. So, for example, if you update multiple fields in the
DataItems variable there will only be one call to update the underlying database,
when a function call is made. To force all queued updates, call the
CommitChanges() function in your policy. The CommitChanges() function does not
take any arguments.

Syntax

The GetByLinks function has the following syntax:
[Array =] GetByLinks(DataTypes, [LinkFilter], [MaxNum], DataItems)

Chapter 6. Functions 105

Parameters

The GetByLinks function has the following parameters.

Table 39. GetByLinks function parameters

Parameter Format Description

DataTypes Array Array of target data type names. The function returns data
items of these data types that are linked to the source data
items specified.

LinkFilter String Filter expression that specifies which linked data items to
retrieve. Optional.

MaxNum Integer Maximum number of data items to retrieve. Default is 1.
Optional.

DataItems Array Array of source data items.

Return value

Array of data items in the target data type that are linked to the source data item.
Optional.

Examples

The following example shows how to retrieve data items linked to another data
item.

Example using IPL.
// Call GetByLinks and pass the target data type,
// the maximum number of data items to retrieve and
// the source data item.

DataTypes = {"Location"};
Filter = "";
MaxNum = "10000";
DataItems = MyCustomers;

MyLocations = GetByLinks(DataTypes, Filter, MaxNum, DataItems);

Example using JavaScript.
// Call GetByLinks and pass the target data type,
// the maximum number of data items to retrieve and
// the source data item.

DataTypes = ["Location"];
Filter = "";
MaxNum = "10000";
DataItems = MyCustomers;

MyLocations = GetByLinks(DataTypes, Filter, MaxNum, DataItems);

The following example shows how to retrieve data items linked to another data
item. In this example, the function filters the data items using the value of the
Location field.

Example using IPL.
// Call GetByLinks and pass the target data type,
// the link filter, the maximum number of data items
// to retrieve and the source data item.

106 Netcool/Impact: Policy Reference Guide

DataTypes = {"Operators"};
Filter = "Location = ’New York’";
MaxNum = "10000";
DataItems = MyCustomers;

MyOperators = GetByLinks(DataTypes, Filter, MaxNum, DataItems);

Example using JavaScript.
// Call GetByLinks and pass the target data type,
// the link filter, the maximum number of data items
// to retrieve and the source data item.

DataTypes = ["Operators"];
Filter = "Location = ’New York’";
MaxNum = "10000";
DataItems = MyCustomers;

MyOperators = GetByLinks(DataTypes, Filter, MaxNum, DataItems);

GetByXPath
The GetByXPath function provides a way to parse an XML string or get an XML
string through an URL specified as parameter.

The data to be retrieved is specified as an XPath expression. When Netcool/Impact
interacts with different systems there are scenarios where the data in
Netcool/Impact is in XML format.

GetByXPath can be used in the following scenarios to retrieve the data for each
source:
v The response from a Web services call. The GetByXPath function retrieves the

data from a web service response.
v The response to a REST API call provides data in XML format. The GetByXPath

function retrieves the information from the response.
v If the data read from a JMS DSA is an XML string, the GetByXPath function

retrieves the data from the XML.

More information about XPath Expression is available on the W3C Web site and
the W3Schools Web site:
v Go to http://www.w3.org, in the standards section, in the technology topic

view, search for XPath, and then a topic titled, XML Path Language (XPath)
Version 1.0.

v Go to http://www.w3schools.com, and search for XPath tutorial and select
XPath Syntax.

Syntax

The GetByXPath function has the following syntax:
result=GetByXPath(inputString,namespacemapping,xPathExpression);

Chapter 6. Functions 107

http://www.w3.org
http://www.w3schools.com

Parameters

The GetByXPath function has the following parameters.

Table 40. GetByXPath function parameters

Parameter Format Description

Input String String The input XML string from which the data must be
retrieved.

The input string can be a URL. The URL is identified as
a string that starts with "file" or "http". If the URL is
specified, the XML document is retrieved from the URL.
The content is then used to extract the data.

If authentication is required for the HTTP method, use
the GetHTTP method to retrieve the XML string output,
and use the output in the GetByXPath function.

Namespace Mapping IPL
Object

XPath expressions can contain namespace prefixes. This
IPL object provides a way to specify the mapping
between the prefix to the real namespace that
corresponds to the prefix.

The syntax for Namespace Mapping is
objectName.<prefixName>=<Namespace URI>

v <prefixName> is the prefix to be specified in the
XPathExpression for an XML node.

v <Namespace URI> is the corresponding URI in the
XML document.

For example, nsMapping.xsi="http://www.w3.org/2001/
XMLSchema-instance";

v xsi is the prefix used in the XPath Expression.

v URI is the URI corresponding to the prefix in the
XML document.

XPathExpression String The XPath expression, that is applied against the input
XML string and the data is retrieved.

Fix Pack 2

Return value

The return value is an Impact Object. The Impact object contains a field called
Result.

For example:
result = GetByXPath(....);
val = result.Result;

The val object is another Impact object which contains the node names or the xml
tags specified in the XPATH expressions as key. The values for the node names are
returned as array of values.

For example:
<book>Book1,Book2</book>

The val Impact object has the attribute called "book"
val[’book’]

108 Netcool/Impact: Policy Reference Guide

The values are represented as array of values in this object.

For example, {Book1,Book2} are the values that are stored in val[’book’]

The output is contained in a constant variable called Result that is contained in a
variable called result:

For example:
result.Result.[NodeName] = Array of Values

where NodeName is the name of the node and Array of Values contains the actual
values.

To access the values that are contained in the result variable, add val =
result.Result.:
val = result.Result.
val.[NodeName] contains array of values;

If the return value is a string, the value will be String. If the return value is a
number, the value will be of type Double. If it is a boolean, the type will be
Boolean.

If a function is specified, only one function per execution is supported.

The functions can be specified as parameter inside the XPath expressions as well.

Example 1

Namespace mapping where no namespaces are defined in the input string.
nsMapping = NewObject();

Example 2

The following examples are of namespaces defined in the input string.

Example 2a:
nsMapping = NewObject();
nsMapping.tns="urn:www-collation-com:1.0";
nsMapping.xsi="http://www.w3.org/2001/XMLSchema-instance";
nsMapping.col1="urn:www-collation-com:1.0"

Example 2b:
nsMapping= NewObject();
nsMapping.xsi="http://www.w3.org/2001/XMLSchema-instance";
nsMapping.soapenv="http://schemas.xmlsoap.org/soap/envelope/"
nsMapping.xsd="http://www.w3.org/2001/XMLSchema";

Example 3

An input string
<com:getCramerObjectDetailsResponse
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance";
xmlns:com="http://interfaces/sessions/ejb/ice/cramer/com";
xmlns:xsd="http://www.w3.org/2001/XMLSchema";
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/";
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">;

<return>

Chapter 6. Functions 109

<cramerObjectDetails>
<entry>

<key xsi:type="xsd:string">AKEY</key>
<value xsi:type="xsd:string">null</value>

</entry>
<entry>

<key xsi:type="xsd:string">Class ID</key>
<value xsi:type="xsd:string">4</value>

</entry>
<entry>

<key xsi:type="xsd:string">DEVICE1</key>
<value xsi:type="xsd:string">null</value>

</entry>
<entry>

<key xsi:type="xsd:string">Model Type</key>
<value xsi:type="xsd:string">1761493060</value>

</entry>
<entry>

<key xsi:type="xsd:string">Class Name</key>
<value xsi:type="xsd:string">CNAME</value>

</entry>
<entry>

<key xsi:type="xsd:string">manufacturer</key>
<value xsi:type="xsd:string">DEVICE2</value>

</entry>
<entry>

<key xsi:type="xsd:string">ResourceId</key>
<value xsi:type="xsd:string">81520</value>

</entry>
</cramerObjectDetails>
<errorCode>0</errorCode>
<errorMsg/>

</return>
</com:getCramerObjectDetailsResponse>

Example 4

An XPathExpression inside a policy:
xPathExpr = "//cramerObjectDetails/entry[key=\"Model Type\"]/value/text()";
xmlResult = GetByXPath(xmlStr, nsMapping, xPathExpr);
Log(xmlResult);

xPathExpr = "//cramerObjectDetails/entry/key/text() |
//cramerObjectDetails/entry/value/text() ";
xmlResult=GetByXPath(xmlStr, nsMapping, xPathExpr);
Log(xmlResult);

xPathExpr = "count(//entry)";
xmlResult=GetByXPath(xmlStr,nsMapping,xPathExpr);
Log(xmlResult);

Log result 1:
(value={1761493060})

Log result 2:
(key={AKEY, Class ID, DEVICE1, Model Type, Class Name, manufacturer, ResourceId},
value={null, 4, null, 1761493060, CNAME, DEVICE2, 81520})

Log result 3:
(FunctionResult=7.0)

In the log result 1, from the first expression, the text of the value node is retrieved
when the text of the key node is Model Type.

110 Netcool/Impact: Policy Reference Guide

In the log result 2, from the second expression, the text value of both key and
value nodes is retrieved in XML.

GetClusterName
You use the GetClusterName function inside a policy to identify which cluster is
running the policy.

Syntax
GetClusterName()

Parameters

This function does not take any parameters.

Return value

String type, the name of the cluster.

GetDate
The GetDate function returns the date/time as the number of seconds expired
since the start of the UNIX epoch.

Syntax

The GetDate function has the following syntax:
Integer = GetDate()

Return value

Number of seconds since the start of the UNIX epoch.

Example

The following example shows how to return the date/time as the number of
seconds in UNIX time.
Seconds = GetDate();
Time = LocalTime(Seconds, "MM/dd/yyyy HH:mm:ss zz");
Log(Seconds);
Log(Time);

This example prints the following to the policy log:
Parser Log: 1056042205
Parser Log: 06/19/2003 13:03:25 EDT

GetFieldValue
Use this function to get the value of static, or non-static fields. For non-static fields,
use the variable FieldName for a Java class or TargetObject for a Java object. For a
static Java class field, use the variable ClassName.

Chapter 6. Functions 111

Adding Java archive (JAR) files to the shared library directory

Before you can use this policy function, you must make the Java classes available
to Netcool/Impact during run time. To make the Java classes available, complete
the following steps:
1. Copy the Java classes to the $IMPACT_HOME/dsalib directory.
2. Restart the Impact Server to load the JAR files.

You must repeat this procedure for each Impact Server because the Java class files
in the $IMPACT_HOME/dsalib directory are not replicated between servers.

Syntax

GetFieldValue(ClassName, TargetObject, FieldName);

Parameters

Table 41. GetFieldValue function parameters

Parameter Description

ClassName Name of the Java class. For a non-static method call, this
parameter would be set to null.

TargetObject Name of the instantiated Java object. For a static method, this
parameter would be set to null.

FieldName Name of the field variable in the Java class to retrieve the
value for.

Returns

Value of the field.

Example

Get the value of the static field named out of the Java class, java.lang.System:
fieldvalue = GetFieldValue("java.lang.System", null, "out");

Get the value of the non-static field firstname from a hypothetical Java class,
com.ibm.DeveloperAccount. Since it is a non-static field, you are retrieving the field
data off an instantiated object of the class. Assume that the constructor needs only
a simple ID number to retrieve the account instance:

Example using IPL.
dev_acct = NewJavaObject("com.ibm.DeveloperAccount", {765224});
first_name = GetFieldValue(null, dev_acct, "firstname");

Example using JavaScript.
dev_acct = NewJavaObject("com.ibm.DeveloperAccount", [765224]);
first_name = GetFieldValue(null, dev_acct, "firstname");

GetGlobalVar
This function retrieves the global value saved by previous SetGlobalVar calls.

It should be used with a corresponding SetGlobalVar() call. The call only retrieves
its own copy of the global variable.

112 Netcool/Impact: Policy Reference Guide

Syntax
GetGlobalVar(variablename)

Parameters

Table 42. GetGlobalVar function parameters

Parameter Description

variablename Name of the variable whose value you want to retrieve.

Example

You can define in your policy a global flag to indicate if a particular exception
happens when you run your policy. The flag is set to false originally. The exception
handler in your policy sets the flag to true if an exception occurs. Your main policy
can check the flag to decide if the exception happens after an action call such as
SendJMSMessage().
function GetGlobalVarTest(){
Log("\nrunTimeFlag in getglobalvartest: " + GetGlobalVar("runTimeFlag"));
}

function SetGlobalVarGetGlobalVarTest(){

Handle java.lang.NullPointerException {
Log("\nNull pointer exception: runTimeFlag is " + GetGlobalVar("runTimeFlag"));

}
Handle java.lang.Exception {

Log("\nException thrown: runTimeTest is " + GetGlobalVar("runTimeFlag"));
}

Date = 1235414139;
SetGlobalVar("runTimeFlag", Date);

SendJMSMessage(com.sun.appserv.naming.S1ASCtxFactory, "jms/ConnectionFactory",
"this is to test the exception handler");

Log("\nrunTimeFlag in saveglobalvar and getglobalvar test: " +
GetGlobalVar("runTimeFlag"));
GetGlobalVarTest();
}

GetHTTP
Fix Pack 2

You can use the GetHTTP function to retrieve any HTTP URL or to post content to a
web page.

You can use it to:
v Retrieve web pages to get information
v Complete a form on a web page
v Run cgi, servlets, or other server scripts on the web server

Syntax
GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName, FormParameters, FilesToSend,
HeadersToSend, HttpProperties)

Chapter 6. Functions 113

Parameters

This function has the following parameters:

Table 43. GetHTTP function parameters

Parameter Description

HTTPHost IP address of the host to which the call is being made.

HTTPPort Port number of the host to which the call is being made.

Protocol Protocol used in the call.

Path The remaining part of the URL being called that follows the
port number.

ChannelKey An arbitrary text.

Method Method used with the function.

AuthHandlerActionTreeName Name of an authorization handler action tree. This parameter
is used for compatibility with earlier versions. The default is
DefaultAuthHandler.

FormParameters Name-value pairs that are URL encoded and added to the
URL being accessed.

FilesToSend Used in the POST method to send files.

HeaderToSend Contains HTTP Header information in name-value pairs that
needs to be added to the HTTP packet that is sent.

114 Netcool/Impact: Policy Reference Guide

Table 43. GetHTTP function parameters (continued)

Parameter Description

HttpProperties A NewObject that contains name-value pairs. The valid
variables are:

v ConnectionTimeout: Sets the timeout until a connection is
established. The default value of zero means the timeout is
not used.

v ResponseTimeout: Sets the default socket timeout
(SO_TIMEOUT) in milliseconds which is the timeout for
waiting for data. A timeout value of zero is interpreted as
an infinite timeout.

v AuthenticationHost: The host the credentials apply to. The
host can be set to null if the credentials are applicable to
any host.

v AuthenticationPort: The port the credentials apply to. The
port can be set to a negative value if the credentials are
applicable to any port.

v AuthenticationScheme: The authentication scheme the
credentials apply to. The authentication scheme can be set
to null if the credentials are applicable to any
authentication scheme.

– Basic: Basic authentication is the original and most
compatible authentication scheme for HTTP. It is also
the least secure as it sends the user name and password
unencrypted to the server.

– Digest: Digest authentication was added in the HTTP 1.1
protocol. Digest authentication is more secure than basic
authentication as it never transfers the actual password
across the network. Instead digest authentication uses it
to encrypt a "nonce" value sent from the server.

v AuthenticationRealm: The realm the credentials apply to. The
realm can be set to null if the credentials are applicable to
any realm.

v UserId: The user name.

v Password: The password.

v Content: Content is generated by using methods such as
creating an xml string or JSON string. You can use this
property with the HTTP POST and HTTP PUT methods.

v ContentType: The default ContentType is text/xml. You can
use this property with the HTTP POST and HTTP PUT
methods.

Example

The following piece of code logs the help page for the Activate function on an
instance of Impact Server.
HTTPHost="9.15.165.115";
HTTPPort=9081;
Protocol="https";
Path="/nci/ActionFunctionBuilder?actionList=Activate";
ChannelKey="tom";
Method="";
AuthHandlerActionTreeName="";
FormParameters=newobject();
FilesToSend=newobject();
HeadersToSend=newobject();

Chapter 6. Functions 115

//HttpProperties=null;
HttpProperties=newobject();

x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName,
FormParameters, FilesToSend, HeadersToSend, HttpProperties);

Log(x);

GetHibernatingPolicies
The GetHibernatingPolicies function retrieves data items from the Hibernation
data type by performing a search of action key values.

To retrieve data items from the Hibernation data type, you call
GetHibernatingPolicies and pass two action key values as input parameters. The
function performs a search of action keys for all Hibernation data items and
returns data items whose action keys fall between the two specified values.

GetHibernatingPolicies returns an array of retrieved hibernation data items. If
you do not specify a return variable, the function assigns the array to the built-in
DataItems variable and sets the value of the Num variable to the number of data
items in the array.

Syntax

The GetHibernatingPolicies function has the following syntax:
[Array =] GetHibernatingPolicies(StartActionKey, EndActionKey, [MaxNum])

Parameters

The GetHibernatingPolicies function has the following parameters.

Table 44. GetHibernatingPolicies function parameters

Parameter Format Description

StartActionKey String Starting action key to be used in the lexicographical
search.

EndActionKey String Ending action key to be used in the lexicographical
search.

MaxNum Integer Maximum number of hibernations to return. Default is 1.
Optional.

Return value

Array of matching Hibernation data items. Optional.

Example

The following example shows how to retrieve the first Hibernation data items
whose action keys fall between the values ActionKey0001 and ActionKey1000.
// Call GetHibernatingPolicies and pass ActionKey0001
// and ActionKey1000 as input parameters

StartActionKey = "AlertKey0001";
EndActionKey = "AlertKey1000";
MaxNum = 1;

116 Netcool/Impact: Policy Reference Guide

MyHibers = GetHibernatingPolicies(StartActionKey, EndActionKey, MaxNum);

// Call ActivateHibernation and pass the Hibernation
// as an input parameter

ActivateHibernation(MyHibers[0]);

GetScheduleMember
The GetScheduleMember function retrieves schedule members associated with a
particular time range group and time.

To retrieve a schedule from a time range group, you call GetScheduleMember and
pass the name of the time range group and the time in seconds. You can retrieve a
specific member by position in the schedule, or retrieve all schedule members.

GetScheduleMember returns an array of retrieved schedule member data items. If
you do not specify a return variable, the function assigns the array to the built-in
DataItems variable and sets the value of the Num variable to the number of data
items in the array.

Syntax

The GetScheduleMember function has the following syntax:
[Array =] GetScheduleMember(Schedule, [TimeToMatch], [ReturnAll], Time)

Parameters

The GetScheduleMembers function has the following parameters.

Table 45. GetScheduleMember function parameters

Parameter Format Description

Schedule Data Item Data item that contains the time range group to query for
the schedule member.

TimeToMatch Integer Position of the schedule member in the schedule. Ignored if
ReturnAll is specified. Optional.

ReturnAll Boolean If true, the function returns all matching schedule members.
If false, the function returns the member specified by the
TimeToMatch parameter. Optional.

Time Integer The time during which the schedule member is active.
Expressed as the number of seconds since the beginning of
the UNIX epoch. You can obtain this number by calling
GetDate.

Return value

Array of the retrieved schedule member data items. Optional.

Examples

The following example shows how to retrieve the schedule member at position 0
of a time range group, using the current time.

Chapter 6. Functions 117

// Call GetScheduleMember and pass the
// time range group, the member position and the current time

TimeRange = GetByKey("Schedule", "Weekday_Shift_01", 1);
Position = 0;
CurrentTime = GetDate();

Members = GetScheduleMember(TimeRange[0], Position, null, CurrentTime);

The following example shows how to retrieve all schedule members from time
range group, using the current time.
// Call GetScheduleMember and pass the name of the
// time range group and the current time

TimeRange = GetByKey("Schedule", "Weekday_Shift_01", 1);
ReturnAll = true;
CurrentTime = GetDate();

Members = GetScheduleMember(TimeRange[0], null, ReturnAll, CurrentTime);

GetServerName
You use the GetServerName function inside a policy to identify which server is
running the policy.

Syntax
GetServerName()

Parameters

This function does not take any parameters.

Return value

String type, the name of the Impact Server.

GetServerVar
You use this function to retrieve the global value saved by previous SetServerVar.

SetServerVar() and GetServerVar() functions can be used as a way to cache and
share variable values across different policies or threads on the server. You have
full control of these variables and are responsible for cleaning up global variables.

Syntax
GetServerVar(variablename)

Parameters

Table 46. GetServerVar function parameters

Parameter Description

variablename Name of the variable.

Example

For an example of using the GetServerVar function, see “SetServerVar” on page
145.

118 Netcool/Impact: Policy Reference Guide

Hibernate
The Hibernate function causes a policy to hibernate.

To hibernate a policy, you call Hibernate and pass an action key and the number of
seconds for the policy to hibernate as input parameters. The action key can be any
unique key you want to use to identify the policy.

When a policy hibernates, it stops running and is stored as a data item of type
Hibernation. At intervals, the hibernating policy activator queries the Hibernation
data type and wakes those policies whose timeout value has expired. You can also
wake a hibernating policy from within another policy using the
ActivateHibernation function. JavaScript also supports hibernation functions.

Syntax

The Hibernate function has the following syntax:
Hibernate(ActionKey, [Reason], Timeout)

Parameters

The Hibernate function has the following parameters.

Table 47. Hibernate function parameters

Parameter Format Description

ActionKey String String that uniquely identifies the hibernating policy.

Reason String String that describes the reason for hibernating the policy.
Optional.

TimeOut Integer Number of seconds before the hibernating policy is available to
be wakened by the hibernating policy activator.

Example

The following example shows how to cause a policy to hibernate for one minute.
// Call Hibernate and pass an action key and the number of seconds
// to hibernate as runtime parameters

ActionKey = "ActionKey" + GetDate();
Timeout = 60;

Hibernate(ActionKey, null, Timeout);
RemoveHibernation(ActionKey);

Int
The Int function converts a float, string, or Boolean expression to an integer.

This function truncates any decimal fraction value associated with the number. For
example, the value of Int(1234.67) is 1234.

Syntax

The Int function has the following syntax:
Integer = Int(Expression)

Chapter 6. Functions 119

Parameters

The Int function has the following parameter.

Table 48. Int function parameters

Parameter Format Description

Expression Float | String | Boolean Expression to be converted.

Return value

The converted integer number.

Important: A float value converted to an int value is truncated not rounded.

Example

The following example shows how to convert float, string, and boolean expressions
to an integer.
MyInt = Int(123.45);
Log(MyInt);

MyInt = Int(123.54);
Log(MyInt);

MyInt = Int("456");
Log(MyInt);

MyInt = Int(false);
Log(MyInt);

This example prints the following message to the policy log:
Parser Log: 123
Parser Log: 123
Parser Log: 456
Parser Log: 0

JavaCall
You use this function to call the method MethodName in the Java object
TargetObject with parameters, or, to call the static method MethodName in the Java
class ClassName with parameters.

Adding Java archive (JAR) files to the shared library directory

Before you can use this policy function, you must make the Java classes available
to Netcool/Impact during run time. To make the Java classes available, complete
the following steps:
1. Copy the Java classes to the $IMPACT_HOME/dsalib directory.
2. Restart the Impact Server to load the JAR files.

You must repeat this procedure for each Impact Server because the Java class files
in the $IMPACT_HOME/dsalib directory are not replicated between servers.

Syntax

JavaCall(ClassName, TargetObject, MethodName, Parameters)

120 Netcool/Impact: Policy Reference Guide

Parameters

Table 49. JavaCall function parameters

Parameter Description

ClassName Name of the Java class. When you are using a non-static
method call, this parameter is set to null.

TargetObject Name of the instantiated Java object. When you are using a
static method, this parameter is set to null.

MethodName Name of the Java method in the Java class you are calling.

Parameters An array of parameter values the method requires.

Returns

Value that the method returns, if any.

Examples

Call a method println() from the Java System object represented by variable out
to print a line of text message to system stdout:

IPL example:
JavaCall(null, out, "println", {"Output from Impact"});

The same example in JavaScript using [] brackets:
JavaCall(null, out, "println", ["Output from Impact"]);

Get a system property named app. Call the java.lang.System.getProperty(String
key) method with the following line:

IPL example:
propValue = JavaCall("java.lang.System", null, getProperty", { "app" });

The same example in JavaScript:
propValue = JavaCall("java.lang.System", null, getProperty", ["app"]);

In this example, use this function to check JVM properties by calling methods on
class java.lang.System from your policy. This IPL example, prints the value of a
JRE system property named app:
propvalue = JavaCall("java.lang.System", null, "getProperty",
{ "app" });
log("Property "app" is " + propvalue);

The same example in JavaScript:
propvalue = JavaCall("java.lang.System", null, "getProperty",
["app"]);
Log("Property "app" is " + propvalue);

In the following IPL example, create a Java object of class Vector and call its
methods:
// Create an new instance of Java class java.util.Vector
vector = NewJavaObject("java.util.Vector", null);
//Add "111111" to vector.
JavaCall(null, vector, "add", { "111111" });
// Retrieve element at position 0.

Chapter 6. Functions 121

log("The first element is " + JavaCall(null, vector, "get", { 0 }));
// Add element "22222" to position 0
JavaCall(null, vector, "add", { 0, "22222" });
// Print out the element at position 0.
// It should now be "22222", not "111111".
log("The first element is " + JavaCall(null, vector, "get", { 0 }));
// Add element "33333" to vector.
JavaCall(null, vector, "add", { "33333" });
// Print out the current size of vector. The value should be 3.
log("Vector size is " + JavaCall(null, vector, "size", {}));

If you are using JavaScript, for a JavaCall that needs an integer argument you
must use the Integer.parseInt JavaCall to create an actual integer.
// Create an new instance of Java class java.util.Vector
vector = NewJavaObject("java.util.Vector", null);
index = JavaCall("java.lang.Integer", null, "parseInt", ["0"]);
//Add "111111" to vector.
JavaCall(null, vector, "add", ["111111"]);
// Retrieve element at position 0.
Log("The first element is " + JavaCall(null, vector, "get", [index]));
// Add element "22222" to position 0
JavaCall(null, vector, "add", [index, "22222"]);
Log("The first element is " + JavaCall(null, vector, "get", [index]));

JRExecAction
The JRExecAction function executes an external command using the JRExec server.

To run an external command, call JRExecAction and pass the name of the
command, an array of strings that contain any command-line arguments and a
timeout value.

Syntax

The JRExecAction function has the following syntax:
JRExecAction(Command, Parameters, ExecuteOnQueue, TimeOut)

Parameters

The JRExecAction function has the following parameters.

Table 50. JRExecAction function input parameters

Parameter Format Description

Command String Name of the external command, script, or program to run.

Parameters Array Array of parameters to pass to the command.

ExecuteOnQueue Boolean To place the command on the JRExec server queue, set this
parameter to true. Commands on the queue are executed
by the JRExec server in parallel mode. To run the command
in parallel with any other commands that might currently
be running, set to this parameter totrue. Set this parameter
to false for most uses of this function.

TimeOut Integer Number of seconds to wait after sending the command
before timing out.

These parameters are only available after you execute the function:

122 Netcool/Impact: Policy Reference Guide

Table 51. JRExecAction function output parameters

Parameter Format Description

ExecOutput String Return value of the script or command.

ExitCode Integer Exit code of the script or command.

Examples

The following example shows how to run an external command named myscript
using the JRExec server using IPL.
// Call JRExecAction and pass the name of the command
// the input parameters and a timeout value
Command = "/usr/local/bin/myscript";
Parameters = {"param1", "param2", "param3"};
TimeOut = 5;
MyResult = JRExecAction(Command, Parameters, false, TimeOut);
// Output Values:
Log("ExecOutput: "+ExecOutput);
Log("ExitCode: "+ExitCode);

The following example shows how to run an external command named myscript
using the JRExec server using JavaScript.
// Call JRExecAction and pass the name of the command
// the input parameters and a timeout value
Command = "/usr/local/bin/myscript";
Parameters = ["param1", "param2", "param3"];
TimeOut = 5;
MyResult = JRExecAction(Command, Parameters, false, TimeOut);
// Output Values:
Log("ExecOutput: "+ExecOutput);
Log("ExitCode: "+ExitCode);

Keys
The Keys function returns an array of strings that contain the field names of the
given data item.

Syntax

The Keys function has the following syntax:
Array = Keys(DataItem)

Parameters

The Keys function has the following parameter.

Table 52. Keys function parameters

Parameter Format Description

DataItem Data item The data item whose keys you want to return.

Return value

Array of strings that contain the field names of the data item.

Chapter 6. Functions 123

Example

The following example shows how to return an array of strings that contain the
field names.
MyNodes = GetByFilter("Node", "0=0", false);
MyNode = MyNodes[0];
Fields = Keys(MyNode);
Log(Fields);

This example prints the names of all the fields in the Node data item.

Length
The Length function returns the number of elements or fields in an array or the
number of characters in a string.

Syntax

The Length function has the following syntax:
Integer = Length(Array | String)

Parameters

The Length function has the following parameter.

Table 53. Length function parameters

Parameter Format Description

Array | String Array or
String

Array whose elements to count, or string whose
characters to count.

Return value

Number of elements or characters.

Example

The following example shows how to return the number of elements in an array.
MyNodes = GetByFilter("Node", "Location = ’New York’", false);
NumNodes = Length(MyNodes);
Log(NumNodes);

This example prints the number of data items in the MyNodes array to the policy
log.

Load
You use this function to load a JavaScript library into your JavaScript policy.

After you load a JavaScript library you can call its defined functions in your
JavaScript policy.

The Load function has the following usage:
Load(libraryname)

124 Netcool/Impact: Policy Reference Guide

where libraryname is the name of an Impact JavaScript policy, or a filename of an
external JavaScript library, without the .js extension. To be able to load a library,
you must first copy it over to the $IMPACT_HOME/jslib directory. After you load the
library, you can call its functions by referencing their names.

Assume, for example, that your MyLibrary.js JavaScript policy has the following
function defined:
function myfunc() {

Log("Running myfunc");
}

You can load the MyLibrary policy into another JavaScript policy, and call its
myfunc function using the following code:
Load("MyLibrary");
myfunc();

LocalTime
The LocalTime function returns the number of seconds since the beginning of the
UNIX epoch as a formatted date/time string.

Syntax

The LocalTime function has the following syntax:
Date = LocalTime(Seconds, Pattern)

Parameters

The LocalTime function has the following parameters.

Table 54. LocalTime function parameters

Parameter Format Description

Seconds Integer Number of seconds.

Pattern String Date/time pattern. Optional. If not specified, the default
date/time pattern is used.

Return value

A formatted date/time string.

Example

The following example shows how to return the given number of seconds in
various formats.
// Return date/time string using default format

Seconds = GetDate();
Time = LocalTime(Seconds);
Log(Time);

// Return date/time strings using specified formats

Seconds = GetDate();
Time = LocalTime(Seconds, "MM/dd/yy");
Log(Time);

Chapter 6. Functions 125

Seconds = GetDate();
Time = LocalTime(Seconds, "HH:mm:ss");
Log(Time);

This example prints the following message to the policy log:
Parser Log: Nov 11 2003, 15:44:38 EST
Parser Log: 06/19/03
Parser Log: 13:11:24

Log
The Log function prints a message to the policy log.

To print a message to the policy log, you call this function and pass the expression
you want to print and, optionally, a log level.

The log level specifies the level of severity for the message, with 1 being the lowest
and 3 being highest. The policy logger service configuration specifies the level of
severity that the message must meet to be printed in the log. For example, if you
configure the policy logger with a severity level of 2, only messages with a log
level of 2 or less are printed. Messages with a log level of 0 are always logged.

Syntax

The Log function has the following syntax:
Log([LogLevel], Expression)

Parameters

The Log function has the following parameters.

Table 55. Log function parameters

Parameter Format Description

LogLevel Integer An Integer between 0 and 3 that specifies
the level of severity for the message. Default
is 0. Optional.

Expression Integer | Float | String
| Boolean

Message to print to the log.

Examples in IPL

The following example shows how to print a message to the policy log in IPL.
Log("This is a test.");

This example prints the following message to the policy log:
Parser Log: This is a test.

The following example shows how to print a message to the policy log with a
severity level of 2 in IPL.

Log(2, "This is another test.");

This example prints the message to the policy log only if the policy logger service
is configured with a log level of 2 or greater.

126 Netcool/Impact: Policy Reference Guide

Examples in IPL and JavaScript

This is the format of a logged string in IPL:
log("Start with a string(IPL):"+MyContext);
Start with a string(IPL):
"Created by parser"=(Serial=POLICYADDED_01, Identifier=1314712147)

This is the format of a logged string in JavaScript:
Log("Start with a string:"+MyContext);
Start with a string:
{Identifier:1314712196, Serial:"POLICYADDED_01"}

Merge
The Merge function merges two contexts or event containers by adding the member
variables of the source context or event container to the those of the target.

Syntax

The Merge function has the following syntax:
[Target] = Merge(Target, Source, [Exclude])

Parameters

The Merge function has the following parameters.

Table 56. Merge function parameters

Parameter Format Description

Target Context | Event container Target context or event container.

Source Context | Event container Source context or event container.

Exclude Array Array of strings that contain the names of
member variables to exclude from the merge.
Optional.

Return value

The merged contexts or event containers. Optional.

Examples

The following example shows how to merge two contexts.
MyContext1 = NewObject();
MyContext1.a = "This";
MyContext1.b = "is";

MyContext2 = NewObject();
MyContext2.c = "a";
MyContext2.d = "test.";

Merge(MyContext1, MyContext2, null);

Log(MyContext1);

This policy prints the following message to the policy log:
Parser Log: "Created by parser"=(a=This, b=is, c=a, d=test.)

Chapter 6. Functions 127

The following example shows how to merge two contexts and exclude some
member variables from the merge using IPL.
MyContext1 = NewObject();
MyContext1.a = "This";
MyContext1.b = "is";

MyContext2 = NewObject();
MyContext2.c = "a";
MyContext2.d = "test.";

Merge(MyContext1, MyContext2, {"c"});

Log(MyContext1);

This example prints the following message to the policy log:
Parser Log: "Created by parser"=(a=This, b=is, d=test.)

The following example shows how to merge two contexts and exclude some
member variables from the merge using JavaScript.
MyContext1 = NewObject();
MyContext1.a = "This";
MyContext1.b = "is";
MyContext2 = NewObject();
MyContext2.c = "a";
MyContext2.d = "test.";
Merge(MyContext1, MyContext2, ["c"]);
Log(MyContext1);

This example prints the following message to the policy log:
Parser Log: "Created by parser"=(a=This, b=is, d=test.)

NewEvent
The NewEvent function creates a new event container.

Syntax

The NewEvent function has the following syntax:
EventContainer = NewEvent(EventReader)

Parameters

The NewEvent function has the following parameter.

Table 57. NewEvent function parameters

Parameter Format Description

EventReader String Name of the event reader associated with the event
source.

Return value

Event container that stores the new event.

Example

The following example shows how to create a new event container, and how to
populate its event field variables and the EventReaderName variable.

128 Netcool/Impact: Policy Reference Guide

MyEvent = NewEvent("OMNIbusEventReader");

// Set the EventReaderName member variable, only required if the policy
// is run by a means other than an event reader service. This specifies the
// name of the event reader to use to send the event

MyEvent.EventReaderName = "OMNIbusEventReader";

// Set the event field variables

MyEvent.Identifier = "XYZ123";
MyEvent.Node = "DB_SERVER_01";
MyEvent.Class = "99999";
MyEvent.Manager = "Netcool/Impact";
MyEvent.Acknowledged = 0;
MyEvent.Severity = 5;
MyEvent.Type = 0;

NewJavaObject
The NewJavaObject function is used to call the constructor for a Java class.

Adding Java archive (JAR) files to the shared library directory

Before you can use this policy function, you must make the Java classes available
to Netcool/Impact during run time. To make the Java classes available, complete
the following steps:
1. Copy the Java classes to the $IMPACT_HOME/dsalib directory.
2. Restart the Impact Server to load the JAR files.

You must repeat this procedure for each Impact Server because the Java class files
in the $IMPACT_HOME/dsalib directory are not replicated between servers.

Syntax

NewJavaObject(ClassName, Parameters)

Parameters

Table 58. NewJavaObject function parameters

Parameter Description

ClassName Name of the Java class you are instantiating a Java object for.

Parameters An array of parameter values a constructor for this class
requires.

Returns

The instantiated object.

Examples

To create a Java String Object "This is a string!" and assign it to variable str,
then in an IPL policy, put in the following line:
str = NewJavaObject("String", {"This is a string!"});

This IPL example of code creates a Java object of class java.util.HashTable and
then adds, retrieves, and removes data from it: Fix Pack 2

Chapter 6. Functions 129

// Create a new instance of Java Hashtable class.
my_hash = NewJavaObject("java.util.Hashtable", null);
// Add table entry ("one", "aaaa" } to my_hash.
JavaCall(null, my_hash, "put", { "one", "aaaa" });
// Add entry ("two", "bbbb") to table my_hash.
JavaCall(null, my_hash, "put", { "two", "bbbb" });
// Add entry ("three", "cccc") to table.
JavaCall(null, my_hash, "put", { "three", "cccc" });
// Print the table entry value indexed by the key "three"
log("Check hashtable value indexed by key \"three\". Value is " +
JavaCall(null, my_hash, "get", {"three" }));
// Remove the entry indexed by the key "one" from the table
JavaCall(null, my_hash, "remove", {"one"});
log("After remove call, my_hash becomes " + my_hash);

To create a Java String Object "This is a string!" and assign it to variable str,
then in a JavaScript policy, put in the following line:
str = NewJavaObject("String", ["This is a string!"]);

This JavaScript example of code creates a Java object of class java.util.HashTable

and then adds, retrieves, and removes data from it: Fix Pack 2

// Create a new instance of Java Hashtable class.
my_hash = NewJavaObject("java.util.Hashtable", null);
// Add table entry ("one", "aaaa") to my_hash.
JavaCall(null, my_hash, "put", ["one", "aaaa"]);
// Add entry ("two", "bbbb") to table my_hash.
JavaCall(null, my_hash, "put", ["two", "bbbb"]);
// Add entry ("three", "cccc") to table.
JavaCall(null, my_hash, "put", ["three", "cccc"]);
// Print the table entry value indexed by the key "three"
Log("Check hashtable value indexed by key \"three\". Value is " +
JavaCall(null, my_hash, "get", ["three"]));
// Remove the entry indexed by the key "one" from the table
JavaCall(null, my_hash, "remove", ["one"]);
Log("After remove call, my_hash becomes " + my_hash);

The Impact policy does not support file or directory operations. The Java API,
however, supports these operations in its java.io.* library. You can access this
library and all other functions the Java API provides by using the Java Policy
functions. This piece of code, for example, calls java.io.File class, opens a
directory, and outputs a list of the files in the directory:

This example applies to IPL.
homedir = NewJavaObject("java.io.File", {"/home/user/"});
file_list = JavaCall(null, homedir, "list", {});
Log("file_list is " + file_list);

This example applies to JavaScript.
homedir = NewJavaObject("java.io.File", {"/home/user/"});
file_list = JavaCall(null, homedir, "list", []);
Log("file_list is " + file_list);

NewObject
The NewObject function creates a new context.

Syntax

The NewObject function has the following syntax:
Context = NewObject()

130 Netcool/Impact: Policy Reference Guide

Return value

The new context.

Example

The following example shows how to create a new context.
MyContext = NewObject();

ParseDate
The ParseDate function converts a formatted date/time string to the time in
seconds since the beginning of the UNIX epoch.

Syntax

The ParseDate function has the following syntax:
Integer = ParseDate(Date, [Pattern])

Parameters

The ParseDate function has the following parameters.

Table 59. ParseDate function parameters

Parameter Format Description

Date String Formatted date/type string.

Pattern String String that contains the formatting pattern. Optional. If not
specified, default format is used.

Return value

The time in seconds.

Example

The following example shows how to convert various formatted date/time strings
to the time in seconds.
// Convert date/time string using default format

DateString = "Nov 11 2003, 15:44:38 EST";
Time = ParseDate(DateString);
Log(Time);

// Convert date/time strings using specified formats

DateString = "06/19/03";
Time = ParseDate(DateString, "MM/dd/yy");
Log(Time);

DateString = "13:11:24";
Time = ParseDate(DateString, "HH:mm:ss");
Log(Time);

This example prints the following message to the policy log:

Chapter 6. Functions 131

Parser Log: 1068583478
Parser Log: 1056002400
Parser Log: 72684

Random
The Random function returns a random integer between zero and the given upper
bound.

Syntax

The Random function has the following syntax:
Integer = Random(UpperBound)

Parameters

The Random function has the following parameter.

Table 60. Random function parameters

Parameter Format Description

UpperBound Integer Highest possible integer to be returned.

Return value

Random integer.

Example

The following example shows how to return a random integer between 1 and 10.
UpperBound = 9;
MyRandom = Random(UpperBound) + 1;
Log(MyRandom);

This example prints the following message to the policy log:
Parser Log: 6

ReceiveJMSMessage
The ReceiveJMSMessage function retrieves a message from the specified JMS
destination.

To retrieve the message, you call this function and pass a JMSDataSource, and a
message properties context as input parameters.

Syntax

The ReceiveJMSMessage function has the following syntax:
ReceiveJMSMessage(DataSource, MethodCallProperties)

132 Netcool/Impact: Policy Reference Guide

Parameters

The ReceiveJMSMessage function has the following parameters:

Table 61. ReceiveJMSMessage function parameters

Parameter Format Description

DataSource String Existing, and valid JMS data source.

MethodCallProperties Context Context that contains optional MessageSelector
and Timeout.

RemoveHibernation
The RemoveHibernation function deletes a data item from the Hibernation data
type and removes it from the hibernation queue.

To remove a hibernation, you call RemoveHibernation and pass the action key for
the data item as an input parameter.

Syntax

The RemoveHibernation function has the following syntax:
RemoveHibernation(ActionKey)

Parameters

The RemoveHibernation function has the following parameter.

Table 62. RemoveHibernation function parameters

Parameter Format Description

ActionKey String String that uniquely identifies the hibernating policy.

Example

The following example shows how to remove a hibernation whose action key is
ActionKey0001.
// Call RemoveHibernation and pass the action key
// for the hibernation as an input parameter

ActionKey = "ActionKey0001";

RemoveHibernation(ActionKey);

Replace
The Replace function uses regular expressions to replace a substring of a given
string.

Note: To replace a backslash character (\) in a string, you must escape the
character twice in the expression, resulting in a string with four backslash
characters (\\\\). For example, to replace the substring first\second in a string,
you must specify it as first\\\\second.

Chapter 6. Functions 133

Syntax

The Replace function has the following syntax:
String = Replace(Expression, Pattern, Substitution, MaxNum)

Parameters

The Replace function has the following parameters.

Table 63. Replace function parameters

Parameter Format Description

Expression String String that contains the substring to be replaced.

Pattern String Substring pattern to be replace.

Substitution String String to substitute for the substring.

MaxNum Integer Maximum number of replacements to perform.

Return value

The resulting string.

Example

The following example shows how to replace a substring in a string.
MyString = "New York";
Pattern = "York";
Substitution = "Jersey";
MyReplace = Replace(MyString, Pattern, Substitution, 1);
Log(MyReplace);

This example prints the following message to the policy log:
Parser Log: New Jersey

ReturnEvent
The ReturnEvent function inserts, updates, or deletes an event from an event
source.

To insert a new event, you first create a new event container using NewEvent and
then populate its member variables with the field values for the new event. Then
you return the event to the event source using ReturnEvent.

Note that the container can contain a variable named EventReaderName that
specifies the name of an event reader service. If the policy is to be run by another
means besides an event reader (for example, using the GUI or nci_trigger
command), you must assign a value to the EventReaderName variable. This value is
the name of the event reader you want to use to send the new event.

To update an event, you change the values of the member variables in the event
container as needed and then return the event to the event source using
ReturnEvent.

To delete an event, you set the DeleteEvent member variable in the event container
to true and then return the event to the event source using ReturnEvent.

134 Netcool/Impact: Policy Reference Guide

Syntax

The ReturnEvent function has the following syntax:
ReturnEvent(Event)

Parameters

The ReturnEvent function has the following parameter.

Table 64. ReturnEvent function parameters

Parameter Format Description

Event Event
container

Event container that represents the event that you want to
insert, update or delete.

Examples

The following example shows how to insert a new event using ReturnEvent.
// Set the EventReaderName variable only if policy is to be
// triggered using something other than an event reader service

MyEvent.EventReaderName = "OMNIbusEventReader";

// Create a new event container using NewEvent
// and populate its member variables

MyEvent = NewEvent("OMNIbusEventReader");
MyEvent.Node = "ACHILLES";
MyEvent.Summary = "Node not responding.";
MyEvent.AlertKey = MyEvent.Node + MyEvent.Summary;

// Return the new event to the event source

ReturnEvent(MyEvent);

The following example shows how to update an event in an event source.
// Update the values of the member variables
// in the event container

EventContainer.Summary = EventContainer.Summary + ": Updated by Netcool/Impact";

// Return the event to the event source

ReturnEvent(EventContainer);

The following example shows how to delete an event in an event source.
// Set the value of the DeleteEvent member variable
// to true

EventContainer.DeleteEvent = true;

// Return the event to the event source

ReturnEvent(EventContainer);

RExtract
The RExtract function uses regular expressions to extract a substring from a string.

This function supports Perl 5 regular expressions.

Chapter 6. Functions 135

Syntax

The RExtract function has the following syntax:
String = RExtract(Expression, Pattern)

Parameters

The RExtract function has the following parameters.

Table 65. RExtract function parameters

Parameter Format Description

Expression String String that contains the substring to extract. The
data to extract is within () in the Expression.

Pattern String Regular expression pattern that specifies the
substring to extract.

Return value

The extracted string.

Example

The following example shows how to use the RExtract function.
Log(RExtract("Not responding to ping on host DB_01", "\s(DB_01).*"));

This example prints the following message to the policy log:
Parser Log: DB_01

RExtractAll
The RExtractAll function uses regular expression matching to extract multiple
substrings from a string.

The resulting matches are returned as elements in an array. This function supports
Perl 5 regular expressions.

To extract multiple substrings from a string, you call RExtractAll and pass a string
expression and a regular expressions pattern. The pattern specifies the matching
characters inside the expression and specifies which characters in the matching
substring to extract. You identify the characters you want to extract by enclosing
them in parentheses inside the pattern.

The default behavior for the RExtractAll function is to return the last match in a
pattern. For example, if you have "<test1>;<test2>;<test3>" and the pattern
returns everything between the parentheses <*>, by default it returns test3.

You can set the Boolean flag to false to return all the matches in a pattern, then
this example "<test1>;<test2>;<test3>" returns all the matches in a pattern
test1, test2, test3. If you set the Boolean flag to true the RExtractAll function
returns the last match in a pattern, the same as the default behavior. The function
assigns the extracted character strings as elements in an array and passes the array
back to the policy.

136 Netcool/Impact: Policy Reference Guide

Syntax

The RExtractAll function has the following syntax options and the use of the
Boolean flag is optional:
Array = RExtractAll(Expression, Pattern);

Array = RExtractAll(Expression, Pattern, Flag);

Parameters

The RExtractAll function has the following parameters.

Table 66. RExtractAll function parameters

Parameter Format Description

Expression String String that contains the substring to extract.

Pattern String Regular expression pattern that specifies the
substrings to extract. You specify the string to
extract from the match using parentheses
characters.

Boolean true or false Optional. Set the Boolean flag to false to return all
the matches in a pattern. Set the Boolean flag to
true to return the last match in a pattern.

Return value

An array of the resulting substrings.

Examples

The following examples show how to use the RExtractAll function without a
Boolean flag.

Example 1
Expression = "Node is DB_02 on rack RK_419";
Pattern = "\\s.*(DB_02).*(RK_419).*";
Log(RExtractAll(Expression, Pattern));

This example prints the following message to the policy log:
Parser Log: {DB_02, RK_419}

Example 2 using IPL
expression="<plantId>122</plantId><plantId>204</plantId><plantId>234</plantId>";
test = RExtractAll(expression, "<plantId\b[^>]*>(.*?)</plantId>");
testNum = Length(test);
Log ("Test Num= " + testNum);
Log ("Plant ID = " + test);

Example 2 using JavaScript
expression="<plantId>122</plantId><plantId>204</plantId><plantId>234</plantId>";
test = RExtractAll(expression, "<plantId\\b[^>]*>(.*?)</plantId>");
testNum = Length(test);
Log ("Test Num= " + String(testNum));
Log ("Plant ID = " + String(test));

This example prints the following message to the policy log:

Chapter 6. Functions 137

06 Jul 2009 15:06:42,798: Parser Log: Test Num= 1
06 Jul 2009 15:06:42,799: Parser Log: Plant ID = {234}

The following example shows how to use the RExtractAll function with a Boolean
flag set as false.

Example 3 using IPL
expression="<plantId>122</plantId><plantId>204</plantId><plantId>234</plantId>";
test = RExtractAll(expression, "<plantId\b[^>]*>(.*?)</plantId>",false);
testNum = Length(test);
Log ("Test Num= " + testNum);
Log ("Plant ID = " + (test));

Example 3 using JavaScript
expression="<plantId>122</plantId><plantId>204</plantId><plantId>234</plantId>";
test = RExtractAll(expression, "<plantId\\b[^>]*>(.*?)</plantId>",false);
testNum = Length(test);
Log ("Test Num= " + String(testNum));
Log ("Plant ID = " + String(test));

This example prints the following message to the policy log:
06 Jul 2009 15:06:42,798: Parser Log: Test Num= 3
06 Jul 2009 15:06:42,799: Parser Log: Plant ID = {122,204,234}

RollbackTransaction
The RollbackTransaction function rolls back any changes done by an SQL
operation.

The RollbackTransaction function is a local transactions function that is used in
SQL operations. The function causes all changes to the database to be undone
when an exception occurs between the BeginTransaction() and
CommitTransaction() functions. It is recommended to call the
RollbackTransaction() function within the localized exception handler.

You must always call the CommitTransaction() function to complete a transaction
even if the RollbackTransaction() function is called.

For more information about the local transactions functions, see Chapter 3, “Local
transactions,” on page 39.

Arguments

The RollbackTransaction() function takes no arguments.

Note: The ObjectServer does not support the use of the RollbackTransaction
function.

SendEmail
The SendEmail function sends an email that uses the email sender service.

To send an email, you call the SendEmail function and pass the email address of
the recipient and the text of the message. You can also pass text for the subject line
and the sender field. You can send an email by passing a data item whose Email
member variable contains a valid email address. This field must be named Email.
You cannot use a data item that has another field that contains email addresses.

138 Netcool/Impact: Policy Reference Guide

The SendEmail function uses UTF-8 encoding of the platform by default. You can
customize the encoding by including the following syntax before calling
SendEmail:
EncodingChar = "<type of charset>";
ex:
EncodingChar = "windows-1251";

Syntax

The SendEmail function has the following syntax:
SendEmail([User], [Address], [Subject], Message, [Sender], ExecuteOnQueue)

Parameters

The SendEmail function has the following parameters.

Table 67. SendEmail function parameters

Parameter Format Description

User Data item Data item of any data type whose Email field contains
the email address of the recipient. Optional.

Address String or a
context
object

Email address for the recipient of the email. If this
parameter is specified, the User parameter is ignored.
You can specify the To, CC, and BCC fields of the
email separately. Multiple email addresses must be
separated by a comma (,). Optional.

Subject String Subject for the message. Optional.

Message String Message body for the email.

Sender String Email address for the sender for the email. Optional

ExecuteOnQueue Boolean Specifies whether to place the outgoing message in the
queue governed by the command execution manager
service. If you specify true, the message is placed in
the queue and sent asynchronously by this service. If
you specify false, the message is sent directly by the
Netcool/Impact. In this case, the policy engine waits
for the message to be sent successfully before
processing any subsequent instructions.

Example

The following example shows how to send an email from a policy that uses the
email address of the recipient.
// Call SendEmail and pass the address, subject and message text
// as input parameters

Address = "srodriguez@example.com";
Subject = "Netcool/Impact Notification";
Message = EventContainer.Node + " has reported the following error condition: "
+ EventContainer.Summary;
Sender = "impact";
ExecuteOnQueue = false;

SendEmail(null, Address, Subject, Message, Sender, ExecuteOnQueue);

Here is an example of using the SendMail function if the Address parameter is a
context object:

Chapter 6. Functions 139

Addresses = NewObject();
Addresses.To = "to@example.com";
Addresses.Cc = "cc1@example.com,cc2@example.com";
Addresses.Bcc = "bcc@example.com";
Subject = "Netcool/Impact Notification";
Message = "Some problem was encountered";
Sender = "impact";
ExecuteOnQueue = false;
SendEmail(null, Addresses, Subject, Message, Sender, ExecuteOnQueue);

SendInstantMessage
The SendInstantMessage function sends an instant message using the Jabber
service.

You must configure the Jabber service as described in the Solutions Guide before
you use this function.

Fix Pack 2 To allow users to enter a password for a jabber group chat, you must
add the GroupChatPassword variable to the policy before you call the
SendInstantMessage function to send the group chat message.

Syntax

The SendInstantMessage function has the following syntax:
SendInstantMessage(To, Group, Subject, TextMessage, ExecuteOnQueue)

Parameters

The SendInstantMessage function has the following parameters.

Table 68. SendInstantMessage function parameters

Parameter Format Description

To String Screen name of the message recipient. To send multiple
recipients, use a comma-separated list of names.

Group String String that identifies a chatroom (if any) to join. The
format of this string is chatroom_name@server/nickname,
where chatroom_name is the name of the chatroom,
server is the name of a Jabber server and nickname is
the name you want to use in the chat. Only available
for use with Jabber servers. Optional.

Subject String Title for instant message. Only available for use with
Jabber servers. Optional.

TextMessage String Content of the instant message.

ExecuteOnQueue Boolean Specifies whether to place the outgoing message in the
queue governed by the command execution manager
service. If you specify true, the message is placed in the
queue and sent asynchronously by this service. If you
specify false, the message is sent directly by the
Netcool/Impact. In this case, the policy engine waits for
the message to be sent successfully before processing
any subsequent instructions. Optional.

140 Netcool/Impact: Policy Reference Guide

Recipient ID formats

When you call SendInstantMessage, you specify the message recipient using the To
parameter. The recipient ID is typically a combination of the messaging system
user name and service ID. The service ID is defined in the configuration properties
for the Jabber service. A set of abbreviations is also provided that you can use
instead of the service ID. The format of the message recipient ID varies, depending
on the instant messaging system you are using.

The Jabber interface supports the following messaging systems:
v Jabber
v ICQ
v AIM
v Yahoo!
v MSN

You can use the following recipient ID formats for the Jabber messaging service.

Table 69. Recipient IDs for Jabber messaging service

Format Example

Jabber ID and fully-qualified
service ID

NetcoolAdmin@jabber.example.com

Jabber ID and fully-qualified
service ID with resource

NetcoolAdmin@jabber.example.com/ops1

Jabber ID and service abbreviation NetcoolAdmin@jabber

You can use the following recipient ID formats for the ICQ messaging service.

Table 70. Recipient IDs for ICQ messaging service

Format Example

ICQ ID and fully-qualified service
ID

137463829@icq.example.com

ICQ ID and service abbreviation 137463829@icq

You can use the following recipient ID formats for the AIM messaging service.

Table 71. Recipient IDs for AIM messaging service

Format Example

AIM ID and fully-qualified service
ID

NetcoolAdmin@aim.example.com

AIM ID and service abbreviation NetcoolAdmin@aim

You can use the following recipient ID formats for the Yahoo! messaging service.

Table 72. Recipient IDs for Yahoo! messaging service

Format Example

Yahoo! ID and fully-qualified service ID NetcoolAdmin@yahoo.example.com

Yahoo! ID and service abbreviation NetcoolAdmin@yahoo

Chapter 6. Functions 141

The Jabber interface provides three sets of recipient ID formats for use with the
MSN messaging service. The first format is for MSN subscribers. The second
format is for Hotmail members. The third format is for Passport members.

You can use the following recipient ID formats when sending messages to an MSN
subscriber using the MSN messaging service.

Table 73. Recipient IDs for MSN subscribers

Format Example

MSN ID and fully-qualified
service ID

NetcoolAdmin%msn.com@msn.example.com

MSN ID and service
abbreviation

NetcoolAdmin%msn.com@msn

You can use the following recipient ID formats when sending messages to a
Hotmail member using the MSN messaging service. Two types of abbreviation are
available for Hotmail.

Table 74. Recipient IDs for Hotmail members

Format Example

Hotmail ID and
fully-qualified service ID

NetcoolAdmin%hotmail.com@msn.example.com

Hotmail ID and service
abbreviation

NetcoolAdmin@msn

Hotmail ID and service
abbreviation

NetcoolAdmin%hotmail.com@msn

You can use the following recipient ID formats when sending messages to a
Passport member using the MSN messaging service.

Table 75. Recipient IDs for Passport members

Format Example

Passport ID and
fully-qualified service ID

NetcoolAdmin%passport.com@msn.example.com

Passport ID and service
abbreviation

NetcoolAdmin%passport.com@msn

Examples

The following example shows how to send an instant message to a user named
NetcoolAdmin.
// Call SendInstantMessage and pass the name of the recipient
// and the content of the message as input parameters

To = "NetcoolAdmin@jabber.example.com";
TextMessage = "Node_0456 is not responding to ping.";

SendInstantMessage(To, null, null, TextMessage, false);

The following example shows hot to send instant messages to multiple recipients.
// Call SendInstantMessage and pass a comma-separated list of recipients
// and the content of the message as input parameters

142 Netcool/Impact: Policy Reference Guide

To = "NetcoolOperator@jabber.example.com, \
NetcoolAdmin%hotmail.com@msn.jabber.example.com";

TextMessage = "Node_0123 is not responding to ping.";

SendInstantMessage(To, null, null, TextMessage, false);

The following example shows how to send a message to a chatroom hosted on a
Jabber server.
// Call SendInstantMessage and pass the chatroom information,
// a subject and the content of the message as input parameters
Group = "netcoolchat@jabber.example.com/NetcoolAdmin";
Subject = "Alert: Node_0123 status changed.";
TextMessage = "Node_0123 has been restored.";

SendInstantMessage(null, Group, Subject, TextMessage, false);

SendJMSMessage
The SendJMSMessage function sends a message to the specified destination using
the JMS DSA.

To send the message, you call this function and pass the JMSDataSource, a
message properties context, and the message body as input parameters.

Syntax

The SendJMSMessage function has the following syntax:
SendJMSMessage(DataSource, MethodCallProperties, Message)

Parameters

The SendJMSMessage function has the following parameters.

Table 76. SendJMSMessage function parameters

Parameter Format Description

DataSource String Valid, and existing JMS data source.

MethodCallProperties Context Context that contains message header, and
other JMS properties for the message.
Custom message properties are supported.

Message String | Context String or context that contains the body of
the message.

SetFieldValue
Use the SetFieldValue function to set the field variable in the Java class to some
value.

If it is a static field, then you specify the Java class ClassName. If it is a non-static
value, then you provide the instance at TargetObject.

Adding Java archive (JAR) files to the shared library directory

Before you can use this policy function, you must make the Java classes available
to Netcool/Impact during run time. To make the Java classes available, complete
the following steps:

Chapter 6. Functions 143

1. Copy the Java classes to the $IMPACT_HOME/dsalib directory.
2. Restart the Impact Server to load the JAR files.

You must repeat this procedure for each Impact Server. This is necessary because
the Java class files in the $IMPACT_HOME/dsalib directory are not replicated between
servers.

Syntax

SetFieldValue(ClassName, TargetObject , FieldName, FieldValue);

Parameters

Table 77. SetFieldValue function parameters

Parameter Description

ClassName Name of the Java class. When using a non-static method call,
this parameter would be set to null.

TargetObject Name of the instantiated Java object. When using a static
method, this parameter would be set to null.

FieldName Name of the field variable in the Java class that you are
setting the value for.

FieldValue The value you are setting the field to.

Returns

N/A

Examples

Reversing the example for “GetFieldValue” on page 111, if you want to set the
non-static firstname field on an instance of the DeveloperAccount class using IPL:
dev_acct = NewJavaObject("com.ibm.DeveloperAccount", {65224});
SetFieldValue(null, dev_acct, "firstname", "Sam");

Reversing the example for “GetFieldValue” on page 111, if you want to set the
non-static firstname field on an instance of the DeveloperAccount class using
JavaScript:
dev_acct = NewJavaObject("com.ibm.DeveloperAccount", [65224]);
SetFieldValue(null, dev_acct, "firstname", "Sam");

Let us assume there is a static counter variable, disconnects, in a hypothetical Java
class, com.ibm.tivoli.EventStats, which we want to increment through an Impact
policy:
counter = GetFieldValue("com.ibm.tivoli.EventStats", "disconnects");
counter += 1;
SetFieldValue("com.ibm.tivoli.EventStats", null, "disconnects", counter);

SetGlobalVar
The SetGlobalVar function creates in a policy a global variable which can be
accessed from any local functions, library functions, and exception handlers in a
policy.

144 Netcool/Impact: Policy Reference Guide

The word “global” refers to the thread scope, which means that any policy code
will access its own copy of the global variable from its own thread. Different
threads that run the same policy will not interfere with one another, that is if the
policy value is changed by one such running thread, the change does not affect the
value of the global variable in other threads.

Syntax
SetGlobalVar(variablename, variablevalue)

Parameters

Table 78. SetGlobalVar function parameters

Parameter Description

variablename Name of the variable.

variablevalue Initial value of the variable.

Example

This piece of code creates a global variable "MyAge" and sets its initial value to 33:
SetGlobalVar("MyAge", 33)

This piece of code clears the entry for the variable1 variable, by passing null value
to SetGlobalVar() call:
SetGlobalVar(variable1, null)

SetServerVar
The SetServerVar function creates a server-wide global variable in a policy.

It can be accessed by any functions and exception handlers, like a global variable
created by SetGlobalVar(). Unlike in SetGlobalVar() calls, however, all threads
running the same policy will share the same copy of the global variable. So if one
thread running the same policy changes the variable value, the change is visible to
all other threads running the same policy.

Syntax
SetServerVar(variablename, variablevalue)

Parameters

Table 79. SetServerVar function parameters

Parameter Description

variablename Name of the variable.

variablevalue Initial value of the variable.

Examples

Here are examples of policies that use the SetServerVar and GetServerVar
functions:
//Policy 1
function SaveServerVarTest(){
flag = "THIS FLAG DENOTES A SERVERVAR";
SetServerVar("runTimeFlag", flag);

Chapter 6. Functions 145

Activate(null, ’Policy2’);
}

function GetServerVarTest(){
Log("runTimeFlag = " + GetServerVar("runTimeFlag"));
}

//Policy2
Log("runTimeFlag = " + GetServerVar("runTimeFlag"));

SnmpGetAction
The SnmpGetAction function retrieves a set of SNMP variables from the specified
agent

The values are then stored in a variable named ValueList and any error messages
in a variable named ErrorString. This function operates by sending an SNMP GET
command to the specified agent.

When you call SnmpGetAction, you pass an SNMP data type and, for SNMP v3,
any authorization parameters that are required. To override the agent and variable
information specified in the SNMP data type, you can also optionally pass a host
name, a port number, a list of OIDs, and other information needed to retrieve the
data.

Syntax

The following is the syntax for SnmpGetAction:
SnmpGetAction(TypeName, [HostId], [Port], [VarIdList], [Community], [Timeout],
[Version], [UserId], [AuthProtocol], [AuthPassword], [PrivPassword], [ContextId],
[ContextName])

Parameters

The SnmpGetAction function has the following parameters.

Table 80. SnmpGetAction function parameters

Parameter Format Description

TypeName String Name of the SNMP data type that specifies the host name,
port, OIDs, and other information needed to retrieve the
SNMP data.

HostId String Optional. Host name or IP address of the system where the
SNMP agent is running. Overrides value specified in the
SNMP data type.

Port Integer Optional. Port where the SNMP agent is running. Overrides
value specified in the SNMP data type.

VarIdList Array Optional. Array of strings containing the OIDs of SNMP
variables to retrieve from the agent. Overrides values
specified in the SNMP data type.

Community String Optional. Name of the SNMP write community string.
Default is public.

Timeout Integer Optional. Number of seconds to wait for a response from the
SNMP agent before timing out.

Version Integer Optional. SNMP version number. Possible values are 1, 2
and 3. Default is 1.

146 Netcool/Impact: Policy Reference Guide

Table 80. SnmpGetAction function parameters (continued)

Parameter Format Description

UserId String Required for SNMP v3 authentication. If using SNMP v1 or
v2, or using v3 without authentication, pass a null value for
this parameter.

AuthProtocol String Optional. For use with SNMP v3 authentication only.
Possible values are. MD5_AUTH, NO_AUTH, SHA_AUTH. NO_AUTH is
the default.

AuthPassword String Optional. For use with SNMP v3 authentication only.
Authentication password associated with the specified
SNMP User ID.

PrivPassword String Optional. For use with SNMP v3 authentication only. Privacy
password associated with the specified SNMP User ID.

ContextId String Optional. For use with SNMP v3 authentication only.
Authentication context ID.

ContextName String Optional. For use with SNMP v3 authentication only.
Authentication context name.

Return Values

When you call SnmpGetAction, it sets the following variables in the policy context:
ValueList and ErrorString.

The ValueList variable is an array of strings, each of which stores the value of one
variable retrieved from the SNMP agent. The strings in the array are assigned in
the order that the variable OIDs are specified in the SNMP data type or the
VarIdList parameter.

ErrorString is a string variable that contains any error messages generated while
attempting to perform the SNMP GET command.

Example 1

The following example shows how to retrieve a set of SNMP variables by calling
SnmpGetAction and passing the name of an SNMP data type as an input parameter.
In this example, the SNMP data type is named SNMP_PACKED. The data type
configuration specifies the host name and port where the SNMP agent is running
and the OIDs of the variables you want to retrieve.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET

TypeName = "SNMP_PACKED";

SnmpGetAction(TypeName, "192.168.1.1", 161, null, null, null, \
null, null, null, null, null, null, null);

// Print the results of the SNMP GET to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;
}

Chapter 6. Functions 147

Example 2

The following example shows how to retrieve a set of SNMP variables by calling
SnmpGetAction and explicitly overriding the default host name, port, and other
configuration values set in the SNMP data type.

Example 2 using IPL.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"};
Community = "private";
Timeout = 15;

SnmpGetAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, null, null, null, null, null, null,null);

// Print the results of the SNMP GET to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;
}

Example 2 using JavaScript.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"];
Community = "private";
Timeout = 15;
SnmpGetAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, null, null, null, null, null, null,null);
// Print the results of the SNMP GET to the policy log
Count = 0;
While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;
}

Example 3

The following example shows how to retrieve a set of SNMP variables using
SNMP v3 authentication.

Example 3 using IPL.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"};
Community = "private";
Timeout = 15;
Version = 3;

148 Netcool/Impact: Policy Reference Guide

UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";

SnmpGetAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, Version, UserId, AuthProtocol, AuthPassword, null, ContextId, null);

// Print the results of the SNMP GET to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;
}

Example 3 using JavaScript.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"];
Community = "private";
Timeout = 15;
Version = 3;
UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";
SnmpGetAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, Version, UserId, AuthProtocol, AuthPassword, null, ContextId, null);
// Print the results of the SNMP GET to the policy log
Count = 0;
While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;
}

SnmpGetNextAction
The SnmpGetNextAction function retrieves the next SNMP variables in the variable
tree from the specified agent.

It stores the resulting OIDs in a variable named VarIdList, the resulting values in
a variable named ValueList, and any error messages in a variable named
ErrorString. The function sends a series of SNMP GETNEXT commands to the
specified agent where each command specifies a single OID for which the next
variable in the tree is to be retrieved.

When you call SnmpGetNextAction, you pass an SNMP data type and, for SNMP
v3, any authorization parameters that are required. To override the agent and
variable information specified in the SNMP data type, you can also optionally pass
a host name, a port number, a list of OIDs, and other information needed to
retrieve the data.

Syntax

The following is the syntax for SnmpGetNextAction:

Chapter 6. Functions 149

SnmpGetNextAction(TypeName, [HostId], [Port], [VarIdList], [Community],
[Timeout], [Version], [UserId], [AuthProtocol], [AuthPassword],
[PrivPassword], [ContextId], [ContextName])

Parameters

The SnmpGetNextAction function has the following parameters.

Table 81. SnmpGetNextAction function parameters

Parameter Format Description

TypeName String Name of the SNMP data type that specifies the host name,
port, OIDs, and other information needed to retrieve the
SNMP data.

HostId String Optional. Host name or IP address of the system where
the SNMP agent is running. Overrides value specified in
the SNMP data type.

Port Integer Optional. Port where the SNMP agent is running.
Overrides value specified in the SNMP data type.

VarIdList Array Optional. Array of strings containing the OIDs of SNMP
variables to retrieve from the agent. Overrides values
specified in the SNMP data type.

Community String Optional. Name of the SNMP write community string.
Default is public.

Timeout Integer Optional. Number of seconds to wait for a response from
the SNMP agent before timing out.

Version Integer Optional. SNMP version number. Possible values are 1, 2
and 3. Default is 1.

UserId String Required for SNMP v3 authentication. If using SNMP v1
or v2, or v3 without authentication, pass a null value for
this parameter.

AuthProtocol String Optional. For use with SNMP v3 authentication only.
Possible values are. MD5_AUTH, NO_AUTH, SHA_AUTH. NO_AUTH
is the default.

AuthPassword String Optional. For use with SNMP v3 authentication only.
Authentication password associated with the specified
SNMP User ID.

PrivPassword String Optional. For use with SNMP v3 authentication only.
Privacy password associated with the specified SNMP
User ID.

ContextId String Optional. For use with SNMP v3 authentication only.
Authentication context ID.

ContextName String Optional. For use with SNMP v3 authentication only.
Authentication context name.

Example 1

The following example shows how to retrieve SNMP variables in the variable tree
by calling SnmpGetNextAction and passing the name of an SNMP data type as an
input parameter. In this example, the SNMP data type is named SNMP_PACKED. The
data type configuration specifies the host name and port where the SNMP agent is
running and the OIDs of the variables whose subsequent values in the tree you
want to retrieve.

150 Netcool/Impact: Policy Reference Guide

// Call SnmpGetNextAction and pass the name of the SNMP
// data type that contains configuration information required
// to perform the SNMP GETNEXT

TypeName = "SNMP_PACKED";

SnmpGetNextAction(TypeName, "192.168.1.1", 161, null, null, \
null, null, null, null, null, null, null, null);

// Print the results of the SNMP GETNEXT to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;
}

Example 2

The following example shows how to retrieve SNMP variables in the variable tree
by calling SnmpGetNextAction and explicitly overriding the default host name, port,
and other configuration values set in the SNMP data type.

Example 2 using IPL.
// Call SnmpGetNextAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP GETNEXT

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"};
Community = "private";
Timeout = 15;

SnmpGetNextAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, null, null, null, null, null, null, null);

// Print the results of the SNMP GETNEXT to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;
}

Example 2 using JavaScript.
// Call SnmpGetNextAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP GETNEXT
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"];
Community = "private";
Timeout = 15;
SnmpGetNextAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, null, null, null, null, null, null, null);
// Print the results of the SNMP GETNEXT to the policy log
Count = 0;

Chapter 6. Functions 151

While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;
}

Example 3

The following example shows how to retrieve subsequent SNMP variables in the
variable tree using SNMP v3 authentication.

Example 3 using IPL.
// Call SnmpGetNextAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP GETNEXT

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"};
Community = "private";
Timeout = 15;
Version = 3;
UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";

SnmpGetNextAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, Version, UserId, AuthProtocol, AuthPassword, null, \
ContextId, null);

// Print the results of the SNMP GET to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;
}

Example 3 using JavaScript.
// Call SnmpGetNextAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP GETNEXT
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"];
Community = "private";
Timeout = 15;
Version = 3;
UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";
SnmpGetNextAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, Version, UserId, AuthProtocol, AuthPassword, null, \
ContextId, null);
// Print the results of the SNMP GET to the policy log
Count = 0;
While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;
}

152 Netcool/Impact: Policy Reference Guide

SnmpSetAction
The SnmpSetAction function sets variable values on the specified SNMP agent.

If the attempt to set variable fails, it stores the resulting error message in a variable
named ErrorString. This function operates by sending an SNMP SET command to
the specified agent.

When you call SnmpSetAction, you pass an SNMP data type, the host name, and
port of the agent, an array of OIDs, and the array of values that you want to set. If
you are using SNMP v3, you can also include information required to authenticate
as an SNMP user.

Syntax

The following is the syntax for SnmpSetAction:
SnmpSetAction(TypeName, [HostId], [Port], [VarIdList], \
ValueList, [Community], [Timeout], [Version], [UserId], [AuthProtocol],\
[AuthPassword], [PrivPassword], [ContextId], [ContextName])

Parameters

The SnmpSetAction function has the following parameters.

Table 82. SnmpSetAction function parameters

Parameter Format Description

TypeName String Name of the SNMP data type that specifies the host
name, port, OIDs, and other information needed to
set the SNMP data.

HostId String Optional. Host name or IP address of the system
where the SNMP agent is running. Overrides value
specified in the SNMP data type.

Port Integer Optional. Port where the SNMP agent is running.
Overrides value specified in the SNMP data type.

VarIdList Array Array of strings containing the OIDs of SNMP
variables to set on the agent. Overrides values
specified in the SNMP data type.

ValueList Array Array of strings containing the values you want to
set. You must specify these values in the same order
that the OIDs appear either in the SNMP data type
or in the VarIdList variable.

Community String Optional. Name of the SNMP write community
string. Default is public.

Timeout Integer Optional. Number of seconds to wait for a response
from the SNMP agent before timing out.

Version Integer Optional. SNMP version number. Possible values are
1, 2 and 3. Default is 1.

UserId String Required for SNMP v3 authentication. If using SNMP
v1 or v2, or using v3 without authentication, pass a
null value for this parameter.

AuthProtocol String Optional. For use with SNMP v3 authentication only.
Possible values are. MD5_AUTH, NO_AUTH, SHA_AUTH.
NO_AUTH is the default.

Chapter 6. Functions 153

Table 82. SnmpSetAction function parameters (continued)

Parameter Format Description

AuthPassword String Optional. For use with SNMP v3 authentication only.
Authentication password associated with the
specified SNMP User ID.

PrivPassword String Optional. For use with SNMP v3 authentication only.
Privacy password associated with the specified
SNMP User ID.

ContextId String Optional. For use with SNMP v3 authentication only.
Authentication context ID.

ContextName String Optional. For use with SNMP v3 authentication only.
Authentication context name.

Example 1

The following example shows how to set SNMP variables by calling SnmpSetAction
and passing the name of an SNMP data type, an array of OIDs, and an array of
values as input parameters. In this example, the SNMP data type is named
SNMP_PACKED.

Example 1 using IPL.
// Call SnmpSetAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP SET

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {" .1.3.6.1.2.1.1.4.0", " .1.3.6.1.2.1.1.5.0"};
ValueList = {"Value_01", "Value_02"};

SnmpSetAction(TypeName, HostId, Port, VarIdList, ValueList, \
null, null, null, null, null, null, null, null, null);

Example 1 using JavaScript.
// Call SnmpSetAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP SET
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [" .1.3.6.1.2.1.1.4.0", " .1.3.6.1.2.1.1.5.0"];
ValueList = ["Value_01", "Value_02"];
SnmpSetAction(TypeName, HostId, Port, VarIdList, ValueList, \
null, null, null, null, null, null, null, null, null);

Example 2

The following example shows how to set SNMP variables using SNMP v3
authentication.

Example 2 using IPL.
// Call SnmpSetAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP SET

TypeName = "SNMP_PACKED";

154 Netcool/Impact: Policy Reference Guide

HostId = "192.168.1.1";
Port = "161";
VarIdList = { ".1.3.6.1.2.1.1.4.0", " .1.3.6.1.2.1.1.5.0"};
ValueList = {"Value_01", "Value_02"};
Community = "private";
Timeout = 15;
Version = 3;
UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";

SnmpSetAction(TypeName, HostId, Port, VarIdList, ValueList, \
Community, Timeout, Version, UserId, AuthProtocol, \
AuthPassword, null, ContextId, null);

Example 2 using JavaScript.
// Call SnmpSetAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP SET
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [".1.3.6.1.2.1.1.4.0", " .1.3.6.1.2.1.1.5.0"];
ValueList = ["Value_01", "Value_02"];
Community = "private";
Timeout = 15;
Version = 3;
UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";
SnmpSetAction(TypeName, HostId, Port, VarIdList, ValueList, \
Community, Timeout, Version, UserId, AuthProtocol, \
AuthPassword, null, ContextId, null);

SnmpTrapAction
The SnmpTrapAction function sends a trap (for SNMP v1) or a notification (for
SNMP v2) to an SNMP manager.

Sending traps or notifications is not supported for SNMP v3.

Syntax

The following is the syntax for SnmpTrapAction:
SnmpTrapAction(HostId, Port, [VarIdList], [ValueList], \
[Community], [Timeout], [Version], [SysUpTime], [Enterprise], \
[GenericTrap], [SpecificTrap], [SnmpTrapOid])

Parameters

The SnmpTrapAction function has the following parameters.

Table 83. SnmpTrapAction function parameters

Parameter Format Description

HostId String Host name or IP address of the system where the
SNMP manager is running.

Port Integer Port where the SNMP manager is running.

Chapter 6. Functions 155

Table 83. SnmpTrapAction function parameters (continued)

Parameter Format Description

VarIdList Array Optional. Array of strings containing the OIDs of
SNMP variables to send to the manager.

ValueList Array Optional. Array of strings containing the values you
want to send to the manager. You must specify these
values in the same order that the OIDs appear in
the VarIdList variable.

Community String Optional. Name of the SNMP write community
string. Default is public.

Timeout Integer Optional. Number of seconds to wait for a response
from the SNMP agent before timing out.

Version Integer Optional. SNMP version number. Possible values are
1 and 2. Default is 1.

SysUpTime Integer Optional. Number of milliseconds since the system
started. Default is the current system time in
milliseconds.

Enterprise String Required for SNMP v1 only. Enterprise ID.

GenericTrap String Required for SNMP v1 only. Generic trap ID.

SpecificTrap String Required for SNMP v1 only. Specific trap ID.

SnmpTrapOid String Optional for SNMP v1. Required for SNMP v2.
SNMP trap OID.

Example 1

The following example shows how to send an SNMP v1 trap to a manager using
SnmpTrapAction.

Example 1 using IPL.
// Call SnmpTrapAction

HostId = "localhost";
Port = 162;
Version = 1;
Community = "public";
SysUpTime = 1001;
Enterprise = ".1.3.6.1.2.1.11";
GenericTrap = 3;
SpecificTrap = 0;
VarIdList = {".1.3.6.1.2.1.2.2.1.1.0", "sysDescr"};
ValueList = {"2", "My system"};

SnmpTrapAction(HostId, Port, VarIdList, ValueList, \
Community, 15, Version, SysUpTime, Enterprise, GenericTrap, \
SpecificTrap, null);

Example 1 using JavaScript.
// Call SnmpTrapAction
HostId = "localhost";
Port = 162;
Version = 1;
Community = "public";
SysUpTime = 1001;
Enterprise = ".1.3.6.1.2.1.11";
GenericTrap = 3;
SpecificTrap = 0;

156 Netcool/Impact: Policy Reference Guide

VarIdList = [".1.3.6.1.2.1.2.2.1.1.0", "sysDescr"];
ValueList = ["2", "My system"];
SnmpTrapAction(HostId, Port, VarIdList, ValueList, \
Community, 15, Version, SysUpTime, Enterprise, GenericTrap, \
SpecificTrap, null);

Example 2

The following example shows how to send an SNMP v2 notification to a manager
using SnmpTrapAction. SNMP v2 requires that you specify an SNMP trap OID
when you call this function.

Example 2 using IPL.
// Call SnmpTrapAction

HostId = "localhost";
Port = 162;
Version = 1;
Community = "public";
SysUpTime = 1001;
Enterprise = ".1.3.6.1.2.1.11";
GenericTrap = 3;
SpecificTrap = 0;
VarIdList = {".1.3.6.1.2.1.2.2.1.1.0", "sysDescr"};
ValueList = {"2", "My system"};
SnmpTrapOid = ".1.3.6.1.2.4.1.11";

SnmpTrapAction(HostId, Port, VarIdList, ValueList, \
Community, 15, Version, SysUpTime, Enterprise, \
GenericTrap, SpecificTrap, SnmpTrapOid);

Example 2 using JavaScript.
// Call SnmpTrapAction
HostId = "localhost";
Port = 162;
Version = 1;
Community = "public";
SysUpTime = 1001;
Enterprise = ".1.3.6.1.2.1.11";
GenericTrap = 3;
SpecificTrap = 0;
VarIdList = [".1.3.6.1.2.1.2.2.1.1.0", "sysDescr"];
ValueList = ["2", "My system"];
SnmpTrapOid = ".1.3.6.1.2.4.1.11";
SnmpTrapAction(HostId, Port, VarIdList, ValueList, \
Community, 15, Version, SysUpTime, Enterprise, \
GenericTrap, SpecificTrap, SnmpTrapOid);

Split
The Split function returns an array of substrings from a string using the given
delimiters.

Syntax

The Split function has the following syntax:
Array = Split(Expression, Delimiters)

Chapter 6. Functions 157

Parameters

The Split function has the following parameters.

Table 84. Split function parameters

Parameter Format Description

Expression String String to split into substrings

Delimiters String String that contains the delimiter characters.

Return value

Array of substrings.

Example

The following example shows how to split a string into an array of substrings.
MyString = "This is a test.";
Delimiters = " ";
MyArray = Split(MyString, Delimiters);
Log(MyArray);

This example prints the following message to the policy log:
Parser Log: {This, is, a, test.}

String
The String function converts an integer, float, or boolean expression to a string.

Syntax

The String function has the following syntax:
String = String(Expression)

Parameters

The String function has the following parameters.

Table 85. String function parameters

Parameter Format Description

Expression Integer | Float |
Boolean

Expression to be converted to a string.

Return value

Converted string value.

Example

The following example shows how to convert integers, floats, and boolean
expressions to a string.
MyString = String(123);
Log(MyString);

MyString = String(123.54);

158 Netcool/Impact: Policy Reference Guide

Log(MyString);

MyString = String(true);
Log(MyString);

This example prints the following message to the policy log for IPL:
Parser Log: 123
Parser Log: 123.54
Parser Log: true

This example prints the following message to the policy log for JavaScript.
JavaScript treats numbers as doubles, as a result, numbers display using decimals:
Parser Log: 123.0
Parser Log: 123.54
Parser Log: true

Strip
The Strip function strips all instances of the given substring from a string.

The order in which you supply the characters is not significant.

Syntax

The Strip function has the following syntax:
String = Strip(Expression, Characters)

Parameters

The Strip function has the following parameters.

Table 86. Strip function parameters

Parameter Format Description

Expression String String to strip.

Characters String String that contains characters to strip from the
string.

Return value

The string with the specified characters stripped out.

Example

The following example shows how to strip a characters from a string.
MyString = "abccababc.";
MyCharacters = "ab";
MyStrip = Strip(MyString, MyCharacters);
Log(MyStrip);

This example prints the following message to the policy log:
Parser Log: ccc.

Chapter 6. Functions 159

Substring
The Substring function returns a substring from a given string using index
positions.

Index positions start at 0.

Syntax

The Substring function has the following syntax:
String = Substring(Expression, Start, End)

Parameters

The Substring function has the following parameters.

Table 87. Substring function parameters

Parameter Format Description

Expression String String to search for the substring.

Start Integer Starting character position of the substring.

End Integer Ending character position of the substring, plus
one.

Return value

The substring returned by index positions.

Example

The following example shows how to return a substring using index positions.
MyString = "This is a test.";
MySubstring = Substring(MyString, 0, 4);
Log(MySubstring);

This example prints the following message to the policy log:
Parser Log: This

Synchronized
Use the Synchronized function to write thread-safe policies for use with a
multi-threaded event processor using IPL or JavaScript.

Synchronized for IPL

The syntax and parameters for the Synchronized function differ for IPL and
JavaScript. Refer to the information in the following sections for the details.

The Synchronized function has the following syntax for IPL:
synchronized(identifier) { statements }

160 Netcool/Impact: Policy Reference Guide

Parameters

The Synchronized function has the following parameters for IPL.

Table 88. Synchronized function parameters for IPL

Parameter Format Description

identifier String The unique name for the statement block.

statements String Programming statements.

Example

The following example shows how to insert an item into a custom data type using
IPL.
insert_table = NewObject();

synchronized (insert_table) {
MyContext = NewObject();
MyContext.Cust_ID = 5;
MyContext.Cust_Loc = "New York";
AddDataItem("Cust", MyContext);
}

Synchronized for JavaScript

The Synchronized function has the following syntax for JavaScript:
synchronized(<function name>, <identifier>);

Parameters

The Synchronized function has the following parameters for JavaScript.

Table 89. Synchronized function parameters for JavaScript

Parameter Format Description

<function name> String The name for the function.

<identifier> String The unique name for the statement block.

Example

The following example shows how to insert an item into a custom data type using
JavaScript.
insert_table = NewObject();

function mySyncFunc() {
MyContext = NewObject();
MyContext.Cust_ID = 5;
MyContext.Cust_Loc = "New York";
AddDataItem("Cust", MyContext);
}

Synchronized(mySyncFunc, insert_table);

ToLower
The ToLower function converts a string to lower case characters.

Chapter 6. Functions 161

Syntax

The ToLower function has the following syntax:
String = ToLower(Expression)

Parameters

The ToLower function has the following parameter.

Table 90. ToLower function parameters

Parameter Format Description

Expression String String to convert to lower case.

Return value

The lower case string.

Example

The following example shows how to convert a string to lower case.
MyString = "tHiS iS a TeSt.";
MyLower = ToLower(MyString);
Log(MyLower);

This example prints the following message to the policy log:
Parser Log: this is a test.

ToUpper
The ToUpper function converts a string to upper case characters.

Syntax

The ToUpper function has the following syntax:
String = ToUpper(Expression)

Parameters

The ToUpper function has the following parameter.

Table 91. ToUpper function parameters

Parameter Format Description

Expression String String to convert to upper case.

Return value

The upper case string.

Example

The following example shows how to convert a string to upper case.

162 Netcool/Impact: Policy Reference Guide

MyString = "tHiS iS a TeSt.";
MyUpper = ToUpper(MyString);
Log(MyUpper);

This example prints the following message to the policy log:
Parser Log: THIS IS A TEST.

Trim
The Trim function trims leading and trailing white space from a string.

Syntax

The Trim function has the following syntax:
String = Trim(Expression)

Parameters

The Trim function has the following parameter.

Table 92. Trim function parameters

Parameter Format Description

Expression String String that you want to trim.

Return value

The string with white space trimmed.

Example

The following example shows how to trim white space from a string.
MyString = " This is a test. ";
MyTrim = Trim(MyString);
Log(MyTrim);

This example prints the following message to the policy log:
Parser Log: This is a test.

TBSM functions
An overview of functions that are used specifically with TBSM.

Netcool/Impact has the three Tivoli Business Service Manager-specific policy
functions.
v PassToTBSM: Used to send events from Netcool/Impact to Tivoli Business

Service Manager. In an Netcool/Impact policy, you can add the PassToTBSM
function to the policy. When you activate the policy using an Netcool/Impact
service, the event information is sent to TBSM.

v RemoteTBSMShell: Used to send RadShell commands from a policy using a
remote Impact Server. The Impact Server and the Tivoli Business Service
Manager server must be configured for Name Server clustering. The clustered
Name Server must contain clusters of the Impact Server and the Tivoli Business
Service Manager server.

Chapter 6. Functions 163

v TBSMShell: Used to add RadShell commands to a policy. This function is Tivoli
Business Service Manager-specific and is available only in a Tivoli Business
Service Manager installation.

PassToTBSM
Use the PasstoTBSM function to send event information from Netcool/Impact to
TBSM. In a Netcool/Impact policy, you can invoke the PassToTBSM function which
gets read as an event by Tivoli Business Service Manager.

PassToTBSM takes one argument, EventContainer. The EventContainer has a set of
member variables that correspond to fields in the incoming event.

Examples

An example of a JMSSend policy that sends messages to a JMS data source using
the SendJMSMessage function.
// Set JMSDataSource to a valid and existing JMSDataSource in Impact.
// The destination where the message is sent is obtained from the JMSDataSource.

Log("\nSetting up props before calling SendJMSMessage action function");
JMSDataSource = ’myJMS_ds’;

// Create a message properties object and populate its
// member variables with message header properties and custom properties

MsgProps = NewObject();
MsgProps.TimeToLive = 0;
MsgProps.Priority = 9;
MsgProps.Expiration = 2000;
MsgProps.DeliveryMode = "PERSISTENT";
MsgProps.ReplyTo="queue2";

// Create a map message content and populate its member
// variables where each variable and value represent a name/
// value pair for the resulting map

MsgMapBody = NewObject();
MsgMapBody.branch = "ATM1";
MsgMapBody.status = "Marginal";

// Call SendJMSMessage and pass the JNDI properties
// context, the message properties context, the message
// map context and other parameters

Log("\n\nCalling SendJMSMessage action function now");
SendJMSMessage(JMSDataSource, MsgProps, MsgMapBody);

log("Received a Message : " + currentContext());
log("Message : " + EventContainer);;

An example of a JMSReceive policy run by the JMSMessageListener service that
assigns fields to the received message and passes the information to Tivoli
Business Service Manager:
// branch = @JMSMessage.branch;
// status = @JMSMessage.status;

ec=NewEvent();
ec.branch = @JMSMessage.branch;

164 Netcool/Impact: Policy Reference Guide

ec.status = @JMSMessage.status;

Log(" Branch : " + ec.branch + " Status : " + ec.status);
PassToTBSM(ec);

RemoteTBSMShell
A stand-alone implementation of Netcool/Impact can run RADShell commands
from a policy in Tivoli Business Service Manager.

The stand-alone Impact Server and the Tivoli Business Service Manager server
must be configured to use Name Server clustering. The clustered Name Server
must contain the clusters of the Impact Server and the Tivoli Business Service
Manager server. The RemoteTBSMShell command can be run from any policy using
the following syntax:

Syntax

Result = RemoteTBSMShell('<command>');:

Where command is the radshell command to run and Result is the string returned
by the radshell command.

This example creates a template called DBFarm.
Result = RemoteTBSMShell (’createTemplate ("DBFarm","man_svg.gif")’);

TBSMShell
This topic describes the TBSMShell function which lets you put RADshell
commands in a policy. With the TBSMShell function, you can change the TBSM
configuration in a policy. Only use this function if your Data server is not
configured for failover. If your Data server is configured for failover, use the
RemoteTBSMShell function.

Syntax

Result = TBSMShell('command');

Where command is a string that you execute in RADShell, and Result is the string
output by RADShell after running the command. The command can be a sequence
of RADShell commands separated by semicolons.

This example creates a template called DBFarm.
Result = TBSMShell (’createTemplate ("DBFarm","man_svg.gif")’);

UpdateEventQueue
The UpdateEventQueue function updates or deletes events in the event reader event
queue.

Use UpdateEventQueue for situations in which a policy modifies an incoming event
that is expected to have other related events in the event queue at the same time.

Note: The UpdateEventQueue does not access events in the EventProcessor queue.
It works only with the events in the EventReader queue. If you update or delete
events in the EventReader queue, it modifies only the event containers within

Chapter 6. Functions 165

Netcool/Impact and does not affect the events in Netcool® OMNIbus. To modify
events in Netcool OMNIbus, you need to use the ReturnEvent function.

To update events, you call UpdateEventQueue and pass the name of the event
reader, a filter string, and an update expression as input values. The filter string
specifies which events to update. It uses the SQL filter syntax, which is similar to
the syntax of the WHERE clause in an SQL SELECT statement. The update expression
is a comma-separated list of field assignments similar to the contents of the SET
clause in an SQL UPDATE statement. For more information about SQL filters, see
“SQL filters” on page 69.

To delete events, you call UpdateEventQueue and pass the name of the event reader,
a filter string, and a boolean value that indicates that you want to perform a delete
operation. As with the update operation above, the filter string uses the SQL filter
syntax and specifies which events you want to delete.

Syntax

The UpdateEventQueue function has the following syntax:
[Integer =] UpdateEventQueue(EventReaderName, Filter, UpdateExpression, IsDelete)

Parameters

The UpdateEventQueue function has the following parameters.

Table 93. UpdateEventQueue function parameters

Parameter Type Description

EventReaderName String Name of the event reader whose queue you want
to update or delete.

Filter String SQL filter expression that specifies which events
in the queue to update or delete.

UpdateExpression String Update expression that specifies which fields and
corresponding values to update. If you want to
delete events, pass a null value for this
parameter.

IsDelete Boolean Boolean value that indicates whether to delete the
specified events. Possible values are true and
false.

Return value

Number of events updated or deleted. Optional.

Examples

The following example shows how to update events in the event queue:
EventReaderName = "OMNIbusEventReader";
Filter = "Node = ’Node Name’";
UpdateExpression = "Node = ’New Node Name’";
IsDelete = false;

NumUpdatedEvents = UpdateEventQueue(EventReaderName, Filter, \
UpdateExpression, IsDelete);

Log("Number of updated events: " + NumUpdatedEvents);

166 Netcool/Impact: Policy Reference Guide

The following example shows how to delete events in the event queue:
EventReaderName = "OMNIbusEventReader";
Filter = "Node = ’ORA_01’";
IsDelete = true;

NumDeletedEvents = UpdateEventQueue(EventReaderName, Filter, null, IsDelete);

URLDecode
The URLDecode function returns a URL encoded string to its original
representation.

This function parallels the Java function java.net.URLDecoder.decode().

Syntax

The URLDecode function has the following syntax:
String = URLDecode(Expression,[Encoding])

Parameters

The URLDecode function has the following parameters.

Table 94. URLDecode function parameters

Parameter Format Description

Expression String The string that you want to decode.

Encoding String The encoding scheme you want to use. This
is optional. The recommended and default
encoding is UTF-8.

Return value

The decoded string.

Example

The following example shows how to decode a URL encoded string back to its
original representation.
ReceivedString = "System.out.println%28%22Hello+World%21%22%29%3B";
OriginalString = URLDecode(ReceivedString, "UTF-8");
Log(OriginalString);

This example prints the following message to the policy log:
Parser Log:
System.out.printIn("Hello world!");

URLEncode
The URLEncode function converts a string to a URL encoded format.

This function parallels the Java function java.net.URLEncoder.encode().

Chapter 6. Functions 167

Syntax

The URLEncode function has the following syntax:
String = URLEncode(Expression, [Encoding])

Parameters

The URLEncode function has the following parameters.

Table 95. URLEncode function parameters

Parameter Format Description

Expression String String that you want to encode.

Encoding String The encoding scheme you want to use. This
is optional. The recommended and default
encoding is UTF-8.

Return value

The URL encoded string.

Example

The following example shows how to encode the query string of a URL and form a
valid URL.
BaseURL = "http://hostname:port/query";
QName1 = "filter";
QVal1 = URLEncode("key=’42ITA’");
QName2 = "comment";
QVal2 = URLEncode("#$&@^%$!!","UTF-8");
Querystring = "?" + QName1 + "=" + QVal1 + "&" + QName2 + "=" + QVal2;

FullURL = BaseURL + Querystring;
Log(FullURL);

This example prints the following message to the policy log:
Parser Log:
http://hostname:port/query?filter=key%3D%2742ITA%27&comment
=%23%24%26%40%5E%25%24%21%21

WSDMGetResourceProperty
The WSDMGetResourceProperty function retrieves the value of a management
property associated with a WSDM (Web Services Distributed Management)
managed resource.

You can use this function to retrieve information about the state of a
WSDM-enabled system, application or device.

To retrieve the property value, you call WSDMGetResourceProperty and pass the URI
of the WSDM endpoint reference and a flattened XML QName that specifies which
property to retrieve.

Syntax
Array = WSDMGetResourceProperty(endPointRef, methodName, propQName)

168 Netcool/Impact: Policy Reference Guide

Parameters

The WSDMGetResourceProperty function has the following parameters.

Table 96. WSDMGetResourceProperty function parameters

Parameter Format Description

endPointRef String URI that specifies the endpoint where the WSDM resource
is located.

UserName String Optional. User name required by the Web service for
SOAP authentication, if any. If no username is required
omit this parameter.

Password String Optional. Password required by the Web service for SOAP
authentication, if any. If no password is required, omit this
parameter.

propQName String Flattened XML QName that specifies the management
property to retrieve. The format for the flattened QName
is namespace:localname [URI], where namespace is the
XML namespace where the property is defined, localname
is the name of the XML element that contains the property
and URI is the endpoint where the WSDM resource is
located. For more information about QNames, see the
XML specifications at http://www.w3.org.

Return Value

The WSDMGetResourceProperty function returns the property value to the policy as
an array. For properties that consist of a single value, the value is stored in the first
array element. For properties that consist of more than one value, the values are
stored in the array in the order that they are retrieved from the WSDM resource. In
most cases, this function returns an array that contains a single property value.

Example

The following example shows how to use WSDMGetResourceProperty to retrieve a
management property named MemoryInUse from the endpoint http://
www.example.com/wsdm-endpoint.
// Specify endpoint URI and flattened QName

MyEndPoint = "http://www.example.com/wsdm-endpoint";
MyQName = "wsrl:MyProperty [http://www.example.com/wsdm-endpoint]";

// Call WSDMGetResourceProperty and pass the endpoint
// and QName and input parameters

MyResult = WSDMGetResourceProperty(MyEndPoint, MyQName);

// Print the value of the property to the policy log

Log("Value of MyProperty is " + MyResult[0]);

WSDMInvoke
The WSDMInvoke function sends a web services message to a WSDM (Web
Services Distributed Management) managed resource.

Chapter 6. Functions 169

The structure and content of this message is defined by the receiving WSDM entity.
You can use this function to send other kinds of messages to a WSDM resource
besides those that retrieve or update a management property.

To retrieve the property value, you call WSDMInvoke and pass the URI of the WSDM
endpoint reference, the method name and a Java QName object that specifies
which property to retrieve.

Syntax
Array = WSDMInvoke(endPointRef, methodName, propQName)

Parameters

The WSDMInvoke function has the following parameters.

Table 97. WSDMInvoke function parameters

Parameter Format Description

endPointRef String URI that specifies the endpoint where the WSDM resource
is located.

Method String Name of the method exposed by the API located at the
WSDM resource endpoint.

propQName Object Java QName object that specifies the management
property to retrieve. You can create a new instance of this
object in the policy using a call to the NewJavaObject
function provided by the Java DSA.

UserName String Optional. User name required by the Web service for
SOAP authentication, if any. If no username is required
omit this parameter.

Password String Optional. Password required by the Web service for SOAP
authentication, if any. If no password is required, omit this
parameter.

Return Value

The WSDMInvoke function returns any values sent in the WSDM reply as an array.
For properties that consist of a single value, the value is stored in the first array
element. For properties that consist of more than one value, the values are stored
in the array in the order that they are retrieved from the WSDM resource. In most
cases, this function returns an array that contains a single property value.

Example

The following example shows how to use WSDMInvoke to remotely invoke a web
services method named GetResourceProperty. This method is exposed by the API
located at the specified WSDM endpoint.

Example using IPL.
// Specify endpoint URI, method name and QName

MyEndPoint = "http://www.example.com/wsdm-endpoint";
MyMethodName = "GetResourceProperty";
MyQNameParams = {"http://docs.oasis-open.org/wsrf/rl-2", "CurrentTime", "wsrl"};
MyQName = NewJavaObject("javax.xml.namespace.QName", qnameParams);

// Call WSDMInvoke and pass the endpoint, the method name

170 Netcool/Impact: Policy Reference Guide

// and the QName object

MyResult = WSDMInvoke(MyEndPoint, MyMethodName, MyQName);

// Print the value of the property to the policy log

Log("Value of MyProperty is " + MyResult[0]);

Example using JavaScript.
// Specify endpoint URI, method name and QName
MyEndPoint = "http://www.example.com/wsdm-endpoint";
MyMethodName = "GetResourceProperty";
MyQNameParams = ["http://docs.oasis-open.org/wsrf/rl-2", "CurrentTime", "wsrl"];
MyQName = NewJavaObject("javax.xml.namespace.QName", qnameParams);

// Call WSDMInvoke and pass the endpoint, the method name
// and the QName object

MyResult = WSDMInvoke(MyEndPoint, MyMethodName, MyQName);

// Print the value of the property to the policy log

Log("Value of MyProperty is " + MyResult[0]);

WSDMUpdateResourceProperty
The WSDMUpdatetResourceProperty function updates the value or values of a
management property associated with a WSDM (Web Services Distributed
Management) managed resource.

You can use this function to set information about the state of a WSDM-enabled
system, application, or device.

To update the property value, call WSDMUpdateResourceProperty and pass the URI
of the WSDM endpoint reference, a flattened XML QName that specifies the
property and an array of new property values.

Syntax
WSDMUpdateResourceProperty(endPointRef, propQName, params)

Parameters

The WSDMUpdateResourceProperty function has the following parameters.

Table 98. WSDMUpdateResourceProperty function parameters

Parameter Format Description

endPointRef String URI that specifies the endpoint where the WSDM resource
is located.

propQName String Flattened XML QName that specifies the management
property to update. The format for the flattened QName is
namespace:localname [URI], where namespace is the XML
namespace where the property is defined, localname is the
name of the XML element that contains the property and
URI is the endpoint where the WSDM resource is located.
For more information about QNames, see the XML
specifications at http://www.w3.org.

Chapter 6. Functions 171

Table 98. WSDMUpdateResourceProperty function parameters (continued)

Parameter Format Description

ArrayOfValues Array An array that contains the value or values of the property.
For properties that consist of a single value, you must
store the value in the first array element. For properties
that consist of more than one value, you must store the
values in the array in the order that they are managed by
the WSDM resource. In most cases, the property consists
of a single value.

UserName String Optional. User name required by the Web service for
SOAP authentication, if any. If no user name is required,
omit this parameter.

Password String Optional. Password required by the Web service for SOAP
authentication, if any. If no password is required, omit this
parameter.

Example

The following example shows how to use WSDMUpdateResourceProperty to update a
management property named MemoryInUse from the endpoint http://
www.example.com/wsdm-endpoint.

Example using IPL.
// Specify endpoint URI, flattened QName and property value

MyEndPoint = "http://www.example.com/wsdm-endpoint";
MyQName = "wsrl:MyProperty [http://www.example.com/wsdm-endpoint]";
Params = {"256"};

// Call WSDMUpdateResourceProperty and pass the endpoint
// and QName and property value

WSDMUpdateResourceProperty(MyEndPoint, MyQName, Params);

Example using JavaScript.
// Specify endpoint URI, flattened QName and property value

MyEndPoint = "http://www.example.com/wsdm-endpoint";
MyQName = "wsrl:MyProperty [http://www.example.com/wsdm-endpoint]";
Params = ["256"];

// Call WSDMUpdateResourceProperty and pass the endpoint
// and QName and property value

WSDMUpdateResourceProperty(MyEndPoint, MyQName, Params);

WSInvokeDL
The WSInvokeDL function is used to make Web services calls when a WSDL file is
compiled with nci_compilewsdl, or when a Web services DSA policy wizard is
configured.

Syntax

This function has the following syntax:
[Return] = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams, [callProps])

172 Netcool/Impact: Policy Reference Guide

This function returns the value of your target Web services call.

Parameters

The WSInvokeDL function has the following parameters

Table 99. WSInvokeDL function parameters

Parameter Format Description

WSService String Web service name. This name is defined in the
/definitions/service element of the WSDL file.

WSEndPoint String The endpoint URL of the target Web service.

WSMethod String Defines which method you would like to call in WSInvokeDL().

WSParams Array An array that contains all of the parameters required by the
specified Web service operation. The operation parameters are
defined by /definitions/message/part elements in the WSDL
file.

callProps String,
boolean,
integer

Optional container in which you can set any of the following
properties listed after this table.

callProps properties

Remember: Any options set in callProps have to precede the actual call to
WSInvokeDL.
v Chunked specifies whether the request can be chunked or not.
v MTOM enables or disables the Message Optimization for the SOAP message.
v CharSet use it to set the encoding other than UTF-8.
v HTTP the default HTTP version is 1.1. You can use this property to set the

protocol version to 1.0.
v ReuseHttpClient enables the underlying infrastructure to reuse the HTTP client

if one is available. The ReuseHttpClient is useful if the client is using HTTPS to
communicate with the server. The ssl handshake is not repeated for each
request. The parameter must be set to true or false.

v EnableWSS enables Web Service Security. If you specify EnableWSS you must also
specify the following properties:
– WSSRepository specifies the path location of WSS Repository.
– WSSConfigFile specifies configuration file for EnableWSS.

v Username specifies the username for basic authentication.
v Password specifies password for basic authentication.
v PreemptiveAuth enables Preemptive Authentication.
v Timeout this property is used in a blocking scenario. The client system times out

after waiting the specified amount of time.
You can optionally set a global Web Service DSA call timeout property called,
impact.server.dsainvoke.timeout. The property must be added to the
Netcool/Impact server property file, <servername>_server.props.
The value is set in milliseconds. For example,
impact.server.dsainvoke.timeout=30000 (30 seconds).
When you set the properties in any of the .props files, restart theNetcool/Impact
server to implement the changes.

Chapter 6. Functions 173

If the impact.server.dsainvoke.timeout property is set, all WSInvokeDL calls
will use the same timeout setting.

v MaintainSession sets the session management to enabled status. When session
management is enabled, the system maintains the session-related objects across
the different requests. The parameter must be set to true or false.

v CacheStub caches generated stubs. This value must be set to true if either or
both of the following properties are enabled, ReuseHttpClient, MaintainSession.
Examples of usage:
callProps.CacheStub=true;

callProps.ReuseHttpClient = true;

Examples

Remember: Any options set in callProps have to precede the actual call to
WSInvokeDL.

Apart from its primary usage, the callProps container can be used to enable
security. For example, if the basic authentication is enabled through the wizard, the
sample policy contains the following lines:
callProps.Username="username";
callProps.Password="password";

The following example shows how to use the WSInvokeDL function to send a
message to the target Web service.

Example using IPL.
ServiceName = "StockQuote";
EndPointURL = "http://www.webservicex.net/stockquote.asmx"
MethodName = "GetQuote";
ParameterArray = { "IBM" }

[Return] = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams, [callProps])

Example using JavaScript.
ServiceName = "StockQuote";
EndPointURL = "http://www.webservicex.net/stockquote.asmx";
MethodName = "GetQuote";
ParameterArray = ["IBM"];

Results = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams, [callProps])

WSNewArray
The WSNewArray function creates a new array of complex data type objects or
primitive values, as defined in the WSDL file for the Web service.

You use this function in cases where you are required to pass an array of complex
objects or primitives to a Web service as message parameters.

Syntax

This function has the following syntax:
Array = WSNewArray(ElementType, ArrayLength)

174 Netcool/Impact: Policy Reference Guide

Parameters

The WSNewArray function has the following parameters.

Table 100. WSNewArray function parameters

Parameter Format Description

ElementType String Name of the complex object or primitive data type
defined in the WSDL file. The name format is
[Package.]TypeName, where Package is the name of the
package you created when you compiled the WSDL file,
without the .jar suffix. The package name is required
only if you did not previously call the
WSSetDefaultPKGName function in the policy.

ArrayLength Integer Number of elements in the new array.

Return Value

A new Web services array.

Examples

The following example shows how to use WSNewArray to create a new Web services
array, where you have previously called WSSetDefaultPKGName in the policy. This
example creates a new array of the data type String as defined in the mompkg.jar
file compiled from a WSDL file.
// Call WSSetDefaultPKGName

WSSetDefaultPKGName("mompkg");

// Call WSNewArray

MyArray = WSNewArray("String", 4);

The following example shows how to use WSNewArray to create a new Web services
array, where you have not previously called WSSetDefaultPKGName in the policy.
// Call WSNewArray

MyArray = WSNewArray("mompkg.String", 4);

WSNewEnum
The WSNewEnum function returns an enumeration value to a target Web service.

Syntax

This function has the following syntax:
[Return] = WSNewEnum(EnumType, EnumValue);

Chapter 6. Functions 175

Parameters

The WSNewEnum function has the following parameters.

Table 101. WSNewEnum function parameters

Parameter Format Description

EnumType String The enumeration class name that exists in the package
that is created by nci_compilewsdl.

EnumValue String The enumeration value to return.

Return Value

A new enumeration type and value.

Example

The following example shows how to use the WSNewEnum function to send a
message to the target Web service.
euro = WSNewEnum("net.webservicex.www.Currency", "EUR");
usd = WSNewEnum("net.webservicex.www.Currency", "USD");

WSNewObject
The WSNewObject function creates a new object of a complex data type as defined
in the WSDL file for the Web service.

You use this function in cases where you are required to pass data of a complex
type to a Web service as a message parameter.

Syntax

This function has the following syntax:
Object = WSNewObject(ElementType)

Parameters

This WSNewObject function has the following parameter.

Table 102. WSNewObject function parameter

Parameter Format Description

ElementType String Name of the complex data type defined in the
WSDL file. The name format is
[Package.]TypeName, where Package is the name of
the package you created when you compiled the
WSDL file, without the .jar suffix.

Return Value

A new Web services object.

Examples

The following example shows how to use WSNewObject to create a new Web
services object, where you have previously called WSSetDefaultPKGName in the

176 Netcool/Impact: Policy Reference Guide

policy. This example creates a new object of the data type ForwardeeInfo as
defined in the mompkg.jar file compiled from the corresponding WSDL.
// Call WSSetDefaultPKGName
WSSetDefaultPKGName("mompkg");

// Call WSNewObject

MyObject = WSNewObject("ForwardeeInfo");

The following example shows how to use WSNewObject to create a new Web
services object, where you have not previously called WSSetDefaultPKGName in the
policy.
// Call WSNewObject

MyObject = WSNewObject("mompkg.ForwardeeInfo");

WSNewSubObject
The WSNewSubObject function creates a new child object that is part of its parent
object and has a field or attribute name of ChildName.

Syntax

This function has the following syntax:
Object = WSNewSubObject(ParentObject, ChildName)

Parameters

This WSNewSubObject function has the following parameter.

Table 103. WSNewSubObject function parameters

Parameter Format Description

ParentObject String Name of the parent object.

ChildName String Name of the new child object.

Return Value

A new Web services child object.

Examples

The following example shows how to use WSNewSubObject to create a new Web
services child object:
// Call WSNewSubObject

ticketId=WSNewSubobject(incident, “TICKETID");

WSSetDefaultPKGName
The WSSetDefaultPKGName function sets the default package used by
WSNewObject and WSNewArray.

The package name is the name you supplied to the nci_compilewsdl script when
you compiled the WSDL file for the Web service. This is also the name of the jar
file created by this script, without the .jar suffix.

Chapter 6. Functions 177

Syntax

This function has the following syntax:
WSSetDefaultPKGName(PackageName)

Parameters

The WSSetDefaultPKGName function has the following parameter.

Table 104. WSSetDefaultPKGName function parameter

Parameter Format Description

PackageName String Name of the default WSDL package used by
WSNewObject and WSNewArray.

Example

The following example sets the default package used by subsequent calls to
WSNewObject and WSNewArray to google.
WSSetDefaultPKGName("google");

178 Netcool/Impact: Policy Reference Guide

Appendix A. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features you can use with Netcool/Impact when accessing it on
the IBM Personal Communications terminal emulator:
v You can operate all features using the keyboard instead of the mouse.
v You can read text through interaction with assistive technology.
v You can use system settings for font, size, and color for all user interface

controls.
v You can magnify what is displayed on your screen.

For more information about viewing PDFs from Adobe, go to the following web
site: http://www.adobe.com/enterprise/accessibility/main.html

© Copyright IBM Corp. 2006, 2014 179

180 Netcool/Impact: Policy Reference Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2014 181

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

182 Netcool/Impact: Policy Reference Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM‘s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Appendix B. Notices 183

184 Netcool/Impact: Policy Reference Guide

Glossary

This glossary includes terms and definitions for Netcool/Impact.

The following cross-references are used in this glossary:
v See refers you from a term to a preferred synonym, or from an acronym or

abbreviation to the defined full form.
v See also refers you to a related or contrasting term.

To view glossaries for other IBM products, go to www.ibm.com/software/
globalization/terminology (opens in new window).

A
assignment operator

An operator that sets or resets a value to a variable. See also operator.

B
Boolean operator

A built-in function that specifies a logical operation of AND, OR or NOT
when sets of operations are evaluated. The Boolean operators are &&, ||
and !. See also operator.

C
command execution manager

The service that manages remote command execution through a function in
the policies.

command line manager
The service that manages the command-line interface.

Common Object Request Broker Architecture (CORBA)
An architecture and a specification for distributed object-oriented
computing that separates client and server programs with a formal
interface definition.

comparison operator
A built-in function that is used to compare two values. The comparison
operators are ==, !=, <, >, <= and >=. See also operator.

control structure
A statement block in the policy that is executed when the terms of the
control condition are satisfied.

CORBA
See Common Object Request Broker Architecture.

D
database (DB)

A collection of interrelated or independent data items that are stored
together to serve one or more applications. See also database server.

© Copyright IBM Corporation 2005, 2011 © IBM 2006, 2014 185

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

database event listener
A service that listens for incoming messages from an SQL database data
source and then triggers policies based on the incoming message data.

database event reader
An event reader that monitors an SQL database event source for new and
modified events and triggers policies based on the event information. See
also event reader.

database server
A software program that uses a database manager to provide database
services to other software programs or computers. See also database.

data item
A unit of information to be processed.

data model
An abstract representation of the business data and metadata used in an
installation. A data model contains data sources, data types, links, and
event sources.

data source
A repository of data to which a federated server can connect and then
retrieve data by using wrappers. A data source can contain relational
databases, XML files, Excel spreadsheets, table-structured files, or other
objects. In a federated system, data sources seem to be a single collective
database.

data source adapter (DSA)
A component that allows the application to access data stored in an
external source.

data type
An element of a data model that represents a set of data stored in a data
source, for example, a table or view in a relational database.

DB See database.

DSA See data source adapter.

dynamic link
An element of a data model that represents a dynamic relationship
between data items in data types. See also link.

E
email reader

A service that polls a Post Office Protocol (POP) mail server at intervals for
incoming email and then triggers policies based on the incoming email
data.

email sender
A service that sends email through an Simple Mail Transfer Protocol
(SMTP) mail server.

event An occurrence of significance to a task or system. Events can include
completion or failure of an operation, a user action, or the change in state
of a process.

event processor
The service responsible for managing events through event reader, event

186 Netcool/Impact: Policy Reference Guide

listener and email reader services. The event processor manages the
incoming event queue and is responsible for sending queued events to the
policy engine for processing.

event reader
A service that monitors an event source for new, updated, and deleted
events, and triggers policies based on the event data. See also database
event reader, standard event reader.

event source
A data source that stores and manages events.

exception
A condition or event that cannot be handled by a normal process.

F
field A set of one or more adjacent characters comprising a unit of data in an

event or data item.

filter A device or program that separates data, signals, or material in accordance
with specified criteria. See also LDAP filter, SQL filter.

function
Any instruction or set of related instructions that performs a specific
operation. See also user-defined function.

G
generic event listener

A service that listens to an external data source for incoming events and
triggers policies based on the event data.

graphical user interface (GUI)
A computer interface that presents a visual metaphor of a real-world scene,
often of a desktop, by combining high-resolution graphics, pointing
devices, menu bars and other menus, overlapping windows, icons and the
object-action relationship. See also graphical user interface server.

graphical user interface server (GUI server)
A component that serves the web-based graphical user interface to web
browsers through HTTP. See also graphical user interface.

GUI See graphical user interface.

GUI server
See graphical user interface server.

H
hibernating policy activator

A service that is responsible for waking hibernating policies.

I
instant messaging reader

A service that listens to external instant messaging servers for messages
and triggers policies based on the incoming message data.

Glossary 187

instant messaging service
A service that sends instant messages to instant messaging clients through
a Jabber server.

IPL See Netcool/Impact policy language.

J
Java Database Connectivity (JDBC)

An industry standard for database-independent connectivity between the
Java platform and a wide range of databases. The JDBC interface provides
a call level interface for SQL-based and XQuery-based database access.

Java Message Service (JMS)
An application programming interface that provides Java language
functions for handling messages.

JDBC See Java Database Connectivity.

JMS See Java Message Service.

JMS data source adapter (JMS DSA)
A data source adapter that sends and receives Java Message Service (JMS)
messages.

JMS DSA
See JMS data source adapter.

K
key expression

An expression that specifies the value that one or more key fields in a data
item must have in order to be retrieved in the IPL.

key field
A field that uniquely identifies a data item in a data type.

L
LDAP See Lightweight Directory Access Protocol.

LDAP data source adapter (LDAP DSA)
A data source adapter that reads directory data managed by an LDAP
server. See also Lightweight Directory Access Protocol.

LDAP DSA
See LDAP data source adapter.

LDAP filter
An expression that is used to select data elements located at a point in an
LDAP directory tree. See also filter.

Lightweight Directory Access Protocol (LDAP)
An open protocol that uses TCP/IP to provide access to directories that
support an X.500 model and that does not incur the resource requirements
of the more complex X.500 Directory Access Protocol (DAP). For example,
LDAP can be used to locate people, organizations, and other resources in
an Internet or intranet directory. See also LDAP data source adapter.

link An element of a data model that defines a relationship between data types
and data items. See also dynamic link, static link.

188 Netcool/Impact: Policy Reference Guide

M
mathematic operator

A built-in function that performs a mathematic operation on two values.
The mathematic operators are +, -, *, / and %. See also operator.

mediator DSA
A type of data source adaptor that allows data provided by third-party
systems, devices, and applications to be accessed.

N
Netcool/Impact policy language (IPL)

A programming language used to write policies.

O
operator

A built-in function that assigns a value to a variable, performs an operation
on a value, or specifies how two values are to be compared in a policy. See
also assignment operator, Boolean operator, comparison operator,
mathematic operator, string operator.

P
policy A set of rules and actions that are required to be performed when certain

events or status conditions occur in an environment.

policy activator
A service that runs a specified policy at intervals that the user defines.

policy engine
A feature that automates the tasks that the user specifies in the policy
scripting language.

policy logger
The service that writes messages to the policy log.

POP See Post Office Protocol.

Post Office Protocol (POP)
A protocol that is used for exchanging network mail and accessing
mailboxes.

precision event listener
A service that listens to the application for incoming messages and triggers
policies based on the message data.

S
security manager

A component that is responsible for authenticating user logins.

self-monitoring service
A service that monitors memory and other status conditions and reports
them as events.

server A component that is responsible for maintaining the data model, managing
services, and running policies.

Glossary 189

service
A runnable sub-component that the user controls from within the graphical
user interface (GUI).

Simple Mail Transfer Protocol (SMTP)
An Internet application protocol for transferring mail among users of the
Internet.

Simple Network Management Protocol (SNMP)
A set of protocols for monitoring systems and devices in complex
networks. Information about managed devices is defined and stored in a
Management Information Base (MIB). See also SNMP data source adapter.

SMTP See Simple Mail Transfer Protocol.

SNMP
See Simple Network Management Protocol.

SNMP data source adapter (SNMP DSA)
A data source adapter that allows management information stored by
SNMP agents to be set and retrieved. It also allows SNMP traps and
notifications to be sent to SNMP managers. See also Simple Network
Management Protocol.

SNMP DSA
See SNMP data source adapter.

socket DSA
A data source adaptor that allows information to be exchanged with
external applications using a socket server as the brokering agent.

SQL database DSA
A data source adaptor that retrieves information from relational databases
and other data sources that provide a public interface through Java
Database Connectivity (JDBC). SQL database DSAs also add, modify and
delete information stored in these data sources.

SQL filter
An expression that is used to select rows in a database table. The syntax
for the filter is similar to the contents of an SQL WHERE clause. See also
filter.

standard event reader
A service that monitors a database for new, updated, and deleted events
and triggers policies based on the event data. See also event reader.

static link
An element of a data model that defines a static relationship between data
items in internal data types. See also link.

string concatenation
In REXX, an operation that joins two characters or strings in the order
specified, forming one string whose length is equal to the sum of the
lengths of the two characters or strings.

string operator
A built-in function that performs an operation on two strings. See also
operator.

190 Netcool/Impact: Policy Reference Guide

U
user-defined function

A custom function that can be used to organize code in a policy. See also
function.

V
variable

A representation of a changeable value.

W
web services DSA

A data source adapter that exchanges information with external
applications that provide a web services application programming interface
(API).

X
XML data source adapter

A data source adapter that reads XML data from strings and files, and
reads XML data from web servers over HTTP.

Glossary 191

192 Netcool/Impact: Policy Reference Guide

Index

Special characters
- 21
!= 21
/ 21
* 21
@ notation 16
% 21
+ 21
= 20, 21
== 21

A
Access Service-related information 3
accessibility viii, 179
Activate 73
ActivateHibernation 74
AddDataItem 75
AOL Instant Messenger 2
array 13
assignment operator 20

B
backslash

See line continuation character
BatchDelete 76
BatchUpdate 78
BeginTransaction 79
Bitwise operators 20
books

see publications vii, viii
boolean operators 20

C
CallDBFunction 79
calling procedures 49

returning database rows 60
returning single value 58

CallStoredProcedure 80
CallStoredProcedure variable 45, 47, 50,

54, 59, 61, 65
chained policy 35
ClassOf 81
clear cache syntax 4
code commenting 36
command line utility

nci_trigger 1
CommandResponse 82
commenting 36
CommitTransaction 89
comparison operators 21
concatenation

strings 21
context 12
control structures 4, 22
conventions

typeface xii

CurrentContext 90
custom code encapsulating 30
customer support x
Customize data output 10

D
data handling 2
data item 15
data types 4

complex 12
policy-level 11
simple 11

database listeners 7
DataItem (built-in variable) 18
DataItems (built-in variable) 17
date

format 11
date patterns 5
DB2 SQL Array 66
DB2 SQL automatic schema

discovery 63
DB2 SQL IN parameters 65
DB2 SQL INOUT parameters 65
DB2 SQL OUT parameters 65
DB2 SQL parameters 63
DB2 SQL result set 63, 65
DB2 SQL scalar values 63
DB2 SQL Stored Procedure 66
DB2 SQL stored procedure examples 65
DB2 SQL stored procedures 65
DB2 SQL stored procedures overview 63
Decrypt 90
DeleteDataItem 91
DeleteEvent 16
Deploy 91
directory names

notation xii
DirectSQL 93
disability 179
DiscoverProcedureSchema

setting 54
Distinct 95

E
e-mail reader service 7
education

See Tivoli technical training
Encrypt 96
encrypted policy 36
environment variables

notation xii
Eval 97
EvalArray 97
event container 15
event handling 2
event readers 7
event state variables 16
EventContainer (built-in variable) 16

example 6
exception handling 4
exceptions 32

handlers 32
raising 32

Exit 98
external function libraries 4
Extract 100

F
filters 69

LDAP filters 70
Mediator filters 72
SQL filters 69

fixes
obtaining ix

Float 100
FormatDuration 102
function

Activate 73
ActivateHibernation 74
AddDataItem 75
BatchDelete 76
BatchUpdate 78
BeginTransaction 79
CallDBFunction 79
CallStoredProcedure 80
ClassOf 81
CommandResponse 82
CommitTransaction 89
CurrentContext 90
Decrypt 90
DeleteDataItem 91
Deploy 91
DirectSQL 93
Distinct 95
Encrypt 96
Eval 97
EvalArray 97
Exit 98
Extract 100
Float 100
FormatDuration 102
GetByFilter 102
GetByKey 104
GetByLinks 105
GetByXPath 107
GetClusterName 111
GetDate 111
GetFieldValue 112
GetGlobalVar 112
GetHibernatingPolicies 116
GetHTTP 113
GetScheduleMember 117
GetServerName 118
GetServerVar 118
Hibernate 119
Int 119
JavaCall 120
JRExecAction 122

© Copyright IBM Corp. 2006, 2014 193

function (continued)
Keys 123
Length 124
Load 124
LocalTime 125
Log 126
Merge 127
NewEvent 128
NewJavaObject 129
NewObject 130
ParseDate 131
Random 132
ReceiveJMSMessage 132
RemoveHibernation 133
Replace 133
ReturnEvent 134
RExtract 135
RExtractAll 136
RollbackTransaction 138
SendEmail 138
SendInstantMessage 140
SendJMSMessage 143
SetFieldValue 143
SetGlobalVar 145
SetServerVar 145
SnmpGetAction 146
SnmpGetNextAction 149
SnmpSetAction 153
SNMPTrapAction 155
Split 157
String 158
Strip 159
Substring 160
Synchronized 160
ToLower 162
ToUpper 162
Trim 163
UpdateEventQueue 165
URLDecode 167
URLEncode 167
WSDMGetResourceProperty 168
WSDMInvoke 170
WSDMUpdatetResourceProperty 171
WSInvokeDL 172
WSNewArray 174
WSNewEnum 175
WSNewObject 176
WSNewSubObject 177
WSSetDefaultPKGName 177

function libraries 30
calling 30
creating 30

functions 4, 25
SNMP 26
TBSMShell 165
user-defined 27
Web services 26

G
GetByFilter 102
GetByKey 104
GetByLinks 105
GetByXPath 107
GetClusterName 111
GetDate 111
GetFieldValue 112

GetGlobalVar 112
GetHibernatingPolicies 116
GetHTTP 113
GetScheduleMember 117
GetServerName 118
GetServerVar 118
glossary 185

H
Hibernate 119

I
ICQ 2
if

See control structures
If statements 22
Impact policy language 3
Int 119
IPL

See Impact policy language

J
Jabber messaging service 2
Jabber reader service 7
Java Policy functions

GetFieldValue 112
JavaCall 120
NewJavaObject 129
overview 26
SetFieldValue 143

JavaCall 120
JMS listener 8
JournalEntry 16
JRExec server 122
JRExecAction 122

K
Keys 123

L
LDAP filters 70
Length 124
LIKE 21
line continuation character 36
local transactions 29, 39, 79, 89, 138

best practices 41
Local transactions template 39
LocalTime 125
Log 126
Log function 10

M
manuals

see publications vii, viii
mathematic operators 21
Mediator filters 72
Merge 127
Microsoft Messenger 2

N
nci_policy script 8
nci_trigger 1, 7, 35
nci_trigger script 8, 34
NewEvent 128
NewJavaObject 129
NewObject 130
notation

environment variables xii
path names xii
typeface xii

Num (built-in variable) 18

O
online publications

accessing viii
operators 4, 19
Operators 20
Oracle stored procedure

example 45, 48, 51
ordering publications viii

P
parameter contexts

creating 53
ParseDate 131
PassToTBSM 164
path names

notation xii
Polices 3
policies

chaining 35
creating 1
e-mail related tasks 2
integration with external systems 3
running 1
using 1
without automatic schema

discovery 52
writing with automatic schema

discovery 43
policy 6

capabilities 2
chained 35
disabling schema discovery 52
encrypted 36
language 3
overview 1
running 35
triggers 7

policy editor 8
Policy Editor

run policy option 34
setting runtime parameters 34

policy runtime parameter
attributes 34

policy triggers
See triggers

problem determination and resolution xi
procedures

returning an array 46
returning scalar values 44

publications vii
accessing online viii

194 Netcool/Impact: Policy Reference Guide

publications (continued)
ordering viii

R
Random 132
ReceiveJMSMessage 132
RemoteTBSMShell 165
RemoveHibernation 133
Replace 133
reserved words 32
return parameter context

creating 53
returned array

handling 48
returned cursor

handling 50
returned rows

handling 62
returned value

handling 60
ReturnEvent 134
RExtract 135
RExtractAll 136
RollbackTransaction 138
run policy option

See Policy Editor
runtime parameters 34

S
scalar values 44
schema

automatic discovery 43
schema discovery

disabling 52
SendEmail 138
SendInstantMessage 140
SendJMSMessage 143
SetFieldValue 143
SetGlobalVar 145
SetServerVar 145
setting runtime parameters

See Policy Editor
SNMP functions 26
SnmpGetAction 146
SnmpGetNextAction 149
SnmpSetAction 153
SNMPTrapAction 155
SOAP/XML messages 7
Software Support

contacting x
overview ix
receiving weekly updates ix

Sp_Parameter context
creating 44, 47, 49, 52, 58, 61, 64

Sp_Parameter member variables 44, 47,
49, 59, 61, 64

specifying schema
example 54

Split 157
SQL filters 69
statement blocks

synchronized 31
stored procedure 44, 45, 46, 47, 48, 49,

50, 54, 59, 61, 64, 65

stored procedures 43
Sybase database 58

String 158
string concatenation 21
string operators 21
Strip 159
Substring 160
Sybase stored procedure

example 60, 62
Synchronized 160
synchronized statement blocks 31

T
TBSM functions 164
TBSM Functions 163, 165
TBSM Functions overview 163
TBSMShell

function 165
time patterns 5
Tivoli Information Center viii
Tivoli technical training viii
ToLower 162
ToUpper 162
training

Tivoli technical viii
triggers 7

database listeners 7
e-mail reader service 7
event readers 7
GUI 8
Jabber reader service 7
JMS listener 8
nci_trigger script 8
Web services listener 7

Trim 163
typeface conventions xii

U
UpdateEventQueue 165
URLDecode 167
URLEncode 167
user-defined functions 27

V
variables 4, 16

built-in 16
notation for xii
user-defined 18

W
Web services functions 26
Web services listener 7
while

See control structures
While statements 24
WSDMGetResourceProperty 168
WSDMInvoke 170
WSDMUpdatetResourceProperty 171
WSInvokeDL 172
WSNewArray 174
WSNewEnum 175

WSNewObject 176
WSNewSubObject 177
WSSetDefaultPKGName 177

Y
Yahoo! Messenger 2

Index 195

196 Netcool/Impact: Policy Reference Guide

����

Printed in USA

SC14-7553-00

	Contents
	Policy Reference Guide
	Intended audience
	Publications
	Netcool/Impact library
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support for problem solving
	Obtaining fixes
	Receiving weekly support updates
	Contacting IBM Software Support
	Determining the business impact
	Describing problems and gathering information
	Submitting problems

	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths

	Chapter 1. Getting started
	Policies overview
	Using policies
	Creating policies
	Running policies

	Policy capabilities
	Event handling
	Data handling
	E-mail
	Instant messages
	Integration with external systems, applications, and devices
	Accessing Service-related information from a policy

	Policy language
	Data types
	Variables
	Operators
	Control structures
	Functions
	External function libraries
	Exception handling
	Clear cache syntax
	Date/Time patterns
	Policy example

	Policy triggers
	Event readers as policy triggers
	Database listeners as policy triggers
	E-Mail readers as policy triggers
	Jabber readers as policy triggers
	Web services listeners as policy triggers
	JMS listeners as policy triggers
	nci_trigger
	Running policies in the graphical user interface

	Policy editor

	Chapter 2. Policy fundamentals
	Differences between IPL and JavaScript
	Customize data output to follow the JavaScript standard
	Policy-level data types
	Simple data types
	Complex data types
	Context
	Array
	Data item
	Event container

	Variables
	Built-in variables
	EventContainer
	DataItems
	DataItem
	Num

	User-defined variables

	Operators
	Assignment operator
	Bitwise operators
	Boolean operators
	Comparison operators
	Mathematic operators
	String operators

	Control structures
	If statements
	While statements

	Functions
	Web services functions
	SNMP functions
	Java Policy functions
	User-defined functions
	Local transactions

	Function libraries
	Creating function libraries
	Calling functions in a library

	Synchronized statement blocks
	Exceptions
	Raising exceptions
	Handling exceptions

	Runtime parameters
	Setting policy runtime parameters in the editor
	Policy runtime parameter configuration window

	Running policies with parameters in the editor
	Running a policy using the nci_trigger script

	Chained policies
	Chaining policies

	Encrypted policies
	Line continuation character
	Code commenting

	Chapter 3. Local transactions
	Local transactions template
	Local transactions best practices

	Chapter 4. Stored procedures
	Oracle stored procedures
	Writing policies with automatic schema discovery
	Calling procedures that return scalar values
	Calling procedures that return an array
	Calling procedures that return a cursor

	Writing policies without automatic schema discovery
	Disabling schema discovery globally
	Creating the Sp_Parameter context
	Creating the parameter contexts
	Creating a return parameter context
	Setting the DiscoverProcedureSchema variable
	Calling the CallStoredProcedure function
	Example of specifying schemas in a policy

	Sybase and Microsoft SQL Server stored procedures
	Calling procedures that return a single value
	Creating the Sp_Parameter context
	Populating the Sp_Parameter member variables
	Calling the CallStoredProcedure function
	Handling the returned value
	Example of a Sybase stored procedure that returns a single value

	Calling procedures that return database rows
	Creating the Sp_Parameter context
	Populating the Sp_Parameter member variables
	Calling the CallStoredProcedure function
	Handling the returned rows
	Example of a Sybase stored procedure that returns a set of database rows

	DB2 SQL stored procedures
	Calling procedures that return scalar values
	Creating a DB2 SQL data source
	Creating the Sp_Parameter context
	Populating the Sp_Parameter member variables
	Calling the CallStoredProcedure function
	Examples of DB2 SQL stored procedures using parameters
	Examples of DB2 SQL stored procedures that return an array

	Chapter 5. Filters
	SQL filters
	LDAP filters
	Mediator filters

	Chapter 6. Functions
	Activate
	ActivateHibernation
	AddDataItem
	BatchDelete
	BatchUpdate
	BeginTransaction
	CallDBFunction
	CallStoredProcedure
	ClassOf
	CommandResponse
	CommitTransaction
	CurrentContext
	Decrypt
	DeleteDataItem
	Deploy
	DirectSQL
	Distinct
	Encrypt
	Eval
	EvalArray
	Exit
	Extract
	Float
	FormatDuration
	GetByFilter
	GetByKey
	GetByLinks
	GetByXPath
	GetClusterName
	GetDate
	GetFieldValue
	GetGlobalVar
	GetHTTP
	GetHibernatingPolicies
	GetScheduleMember
	GetServerName
	GetServerVar
	Hibernate
	Int
	JavaCall
	JRExecAction
	Keys
	Length
	Load
	LocalTime
	Log
	Merge
	NewEvent
	NewJavaObject
	NewObject
	ParseDate
	Random
	ReceiveJMSMessage
	RemoveHibernation
	Replace
	ReturnEvent
	RExtract
	RExtractAll
	RollbackTransaction
	SendEmail
	SendInstantMessage
	SendJMSMessage
	SetFieldValue
	SetGlobalVar
	SetServerVar
	SnmpGetAction
	SnmpGetNextAction
	SnmpSetAction
	SnmpTrapAction
	Split
	String
	Strip
	Substring
	Synchronized
	ToLower
	ToUpper
	Trim
	TBSM functions
	PassToTBSM
	RemoteTBSMShell
	TBSMShell

	UpdateEventQueue
	URLDecode
	URLEncode
	WSDMGetResourceProperty
	WSDMInvoke
	WSDMUpdateResourceProperty
	WSInvokeDL
	WSNewArray
	WSNewEnum
	WSNewObject
	WSNewSubObject
	WSSetDefaultPKGName

	Appendix A. Accessibility
	Appendix B. Notices
	Trademarks

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	S
	U
	V
	W
	X

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

